,"and the snout was gradually shaped with mucus cells. The callose pad of the throat was keratinized, and the mucosal epithelium of the branchial arch was thickened. Mucus cells and taste buds were initially observed. The muscular layer of the esophagus was found to become thicker, with circular muscles as the major type. Several vacuoles were formed between hepatocytes, which became smaller. There were folds and striated margins on the intestinal epidermis. Further, the folds from the foregut to the hindgut became shorter as the goblet cells increased. At 9 DPH, the muscular layer of the posterior pharyngeal callose pad was identified, and the mucosal layer on the opposite side of the callose pad began to sag and form folds. The esophageal circular muscle developed; however, the longitudinal muscle did not manifest. Goblet cells were distributed in the intestine and the posterior segment to a greater extent. At 10 DPH, the lip cells displayed a keratinization trend, and the comb processes were formed on the surface of the callose pad. At 13 DPH, the yolk sac was completely absorbed, and the endo-exotrophic period transitioned to the exogenous nutrition period. At 43 DPH, the structures of the oropharyngeal cavity, gill, and intestine aligned with those of adult fish and gradually developed and improved as the fish grew. Herein, the development process for the digestive system of larvae and juveniles was further divided into three stages: endogenous nutrition period, endo-exotrophic period, and exogenous nutrition period. The change in feeding habits was found to be relative, and the digestive function was found to improve accordingly." />
  中国水产科学  2022, Vol. 29 Issue (07): 1033-1043  DOI: 10.12264/JFSC2021-0411
0

引用本文 

李绍明, 田璐, 肖俊红, 梁志强, 吴含含, 向兴, 张在权, 李传武. 湘华鲮仔、稚鱼消化系统发育组织学观察[J]. 中国水产科学, 2022, 29(7): 1033-1043. DOI: 10.12264/JFSC2021-0411.
LI Shaoming, TIAN Lu, XIAO Junhong, LIANG Zhiqiang, WU Hanhan, XIANG Xing, ZHANG Zaiquan, LI Chuanwu. Histological study of the development of the digestive system of Sinilabeo decorus tungting larvae[J]. Journal of Fishery Sciences of China, 2022, 29(7): 1033-1043. DOI: 10.12264/JFSC2021-0411.

基金项目

湖南省科技计划项目(2016NK2177, 2006NK3128);湖南省中央财政农业技术推广项目(湘财农指[2008] 155 号);湖南省畜牧水产局养殖业科研项目(XMY200608, XMY200710, XMY200806).

作者简介

李绍明(1977–),男,高级工程师,研究方向为特种水产养殖. E-mail: 2956914258@qq.com

通信作者

通信作者:李传武,研究员,研究方向为鱼类遗传育种. E-mail: lichuanwu1219@126.com

文章历史

收稿日期:2021-08-31
修改日期:2022-01-04
湘华鲮仔、稚鱼消化系统发育组织学观察
李绍明1,田璐1,肖俊红2,梁志强1,吴含含2,向兴3,张在权4,李传武1,     
1. 湖南省水产科学研究所,湖南 长沙 410153
2. 湖南农业大学动物科技学院,湖南 长沙 410128
3. 怀化市洪江区畜牧水产事务中心,湖南 怀化 418000
4. 怀化天鲮自然保护有限公司,湖南 怀化 418000
摘要:采用连续石蜡切片、苏木精-伊红染色技术,对湘华鲮[Sinilabeo decorus tungting (Nichols)]出膜后2~80 d的仔稚鱼消化系统发生进行研究。结果表明,2日龄的仔鱼口、咽腔、肠腔、肛门形成,但口咽腔未贯通;肝细胞紧紧围绕着前肠周围,形成肝细胞索。4日龄,消化道上皮细胞开始功能性分化;肝细胞团增多,填充于卵黄囊与消化道间,胞质着色较浅初现肝血窦;消化道贯通,仔鱼由内源性营养向混合性营养转变。6日龄口裂加深,呈“>”形,吻部初具形状,初现黏液细胞;咽喉胼胝垫出现角质化,鳃弓黏膜上皮增厚,初现黏液细胞和味蕾;食道肌层变厚,环形肌为主;肝细胞间形成大量空泡,肝细胞变小;肠表皮出现皱褶和纹状缘,前肠到后肠皱褶逐渐变短,杯状细胞增多。9日龄咽后部的胼胝垫处肌层发达,胼胝垫对侧的黏膜层开始凹陷形成皱褶;食管环肌发达,纵肌不明显;肠道均分布有杯状细胞,后肠段最多。10日龄,唇部细胞出现角质化趋势,胼胝垫表面形成梳状突起。13日龄,卵黄囊完全消失,混合性营养转变为外源性营养。37日龄,稚鱼肝胰脏、食管组织结构均似成鱼,发育基本完成。43日龄,口咽腔、鳃与肠道组织发育基本完成。本研究将湘华鲮仔稚鱼消化系统的发育分为3个阶段,即卵黄期、混合性营养及外源性营养阶段。研究发现,湘华鲮消化器官组织结构的发育和变化,始终是与食性的转变相适应的。湘华鲮其仔稚鱼消化系统组织学研究可为湘华鲮苗种培育中饵料管理提供理论依据,对提高湘华鲮人工养殖的存活率和生长性能具有重要意义。
关键词湘华鲮    消化系统    器官发生    组织学    
Histological study of the development of the digestive system of Sinilabeo decorus tungting larvae
LI Shaoming1,TIAN Lu1,XIAO Junhong2,LIANG Zhiqiang1,WU Hanhan2,XIANG Xing3,ZHANG Zaiquan4,LI Chuanwu,1    
1. Hunan Fisheries Science Institute, Changsha 410153, China
2. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
3. Animal Husbandry and Aquatic Products Bureau of Huaihua City, Huaihua 418000, China
4. Huaihua Tianling Nature Protection Company, Huaihua 418000, China
Abstract: Sinilabeo decorus tungting is a category of endangered fish that urgently requires resource protection. A histological study of the digestive system of larvae must be required to improve the survival rate of the artificial larvae of S. decorus tungting. In this study, the digestive system of S. decorus tungting from 2 to 80 days post-hatch (DPH) was studied using tissue sectioning technique, HE (hematoxylin-eosin) staining, and histochemical staining. The initial digestive system appeared to have a differentiated buccopharyngeal cavity and intestine at 2 DPH; However, the buccopharyngeal cavity was not opened outward. Further, hepatocytes closely surrounded the foregut and formed the hepatic cord. At 4 DPH, the gastrointestinal epithelial cells began to differentiate functionally, and the hepatocyte mass increased accordingly, filling between the yolk sac and digestive tract with light cytoplasmic staining and hepatic sinusoids initially. The digestive tract was connected, and the larvae were found to have entered the endo-exotrophic period. At 6 DPH, the cleft of the mouth deepened, assuming the shape of">,"and the snout was gradually shaped with mucus cells. The callose pad of the throat was keratinized, and the mucosal epithelium of the branchial arch was thickened. Mucus cells and taste buds were initially observed. The muscular layer of the esophagus was found to become thicker, with circular muscles as the major type. Several vacuoles were formed between hepatocytes, which became smaller. There were folds and striated margins on the intestinal epidermis. Further, the folds from the foregut to the hindgut became shorter as the goblet cells increased. At 9 DPH, the muscular layer of the posterior pharyngeal callose pad was identified, and the mucosal layer on the opposite side of the callose pad began to sag and form folds. The esophageal circular muscle developed; however, the longitudinal muscle did not manifest. Goblet cells were distributed in the intestine and the posterior segment to a greater extent. At 10 DPH, the lip cells displayed a keratinization trend, and the comb processes were formed on the surface of the callose pad. At 13 DPH, the yolk sac was completely absorbed, and the endo-exotrophic period transitioned to the exogenous nutrition period. At 43 DPH, the structures of the oropharyngeal cavity, gill, and intestine aligned with those of adult fish and gradually developed and improved as the fish grew. Herein, the development process for the digestive system of larvae and juveniles was further divided into three stages: endogenous nutrition period, endo-exotrophic period, and exogenous nutrition period. The change in feeding habits was found to be relative, and the digestive function was found to improve accordingly.
Key words Sinilabeo decorus tungting (Nichols)    digestive system    organogeny    histology    

湘华鲮[Sinilabeo decorus tungting (Nichols)],俗称“青鱼”,隶属鲤科,鲃亚科(Barbinae),华鲮属(Sinilabeo),体形修长,口下位,口裂弧形[1], 1980年前,在湘、资、沅、澧四条江河中均有发现,尤以沅水中上游常见。目前,主要分布于湖南怀化的沅水干流和资水新邵段中,湘华鲮是湖南省特有的大型野生经济鱼类[2]。卞伟等[3]研究表明,湘华鲮遭受了大量捕捞以及栖息环境的破坏,资源急剧减少,已属濒危物种,在1961—2010年间,湖南沅水流域的湘华鲮年均产量下降了159.15 t,分布范围缩减50%以上。湘华鲮味道鲜美、肌肉营养价值高,同时具有一定药用价值,养殖前景广阔[4]。最早,湘华鲮由Nichols等[5]报道后,梁启燊[6]、湖南省水产研究所[2]和伍献文[7]先后对湘华鲮的分类和形态进行了相关的研究。王宾贤等[8]首次开发了湘华鲮的人工繁殖和苗种培育技术,赵明蓟等[9]研究了温度对湘华鲮胚胎及胚后发育的影响,为湘华鲮的基础研究和规模化人工养殖的突破提供了理论支撑。

鱼类消化系统发育与食性的演化规律是相适应的,在消化器官发育完善之前主要靠卵黄囊提供营养,随着卵黄囊的消失,逐渐过渡到外源营养阶段,消化系统发育逐渐完善。研究发现,不同鱼类仔稚鱼的消化系统发育快慢各异。大西洋白姑鱼[10](Argyrosomus regius) 5日龄卵黄囊吸收完全,此时食道黏膜拉长、黏液细胞增多;鳜[11] (Siniperca chuatsi) 9日龄卵黄囊消失,消化道各部位发育明显;鮻[12](Liza haematocheila) 8日龄卵黄囊消失,胃壁出现纹状缘结构;条石鲷[13] (Oplegnathus fasciatus) 4日龄卵黄囊耗尽,消化道与外界相通,开始大量摄食。研究鱼类仔稚鱼的消化系统发育组织学,发现转食规律、幼鱼消化机能和营养需求间关系,对开口饵料种类的开发和投喂时间的选择具有重要意义。在仔稚鱼卵黄囊吸收完全过渡到外源营养阶段,确保充足适宜的开口饵料能显著提高鱼苗的存活率和生长性能。研究发现,不同转食饵料对圆口铜鱼[14](Coreius guichenoti)、线鳢[15](Channa striata)、牙鲆[16] (Paralichthys olivaceus)早期仔稚鱼生长和存活影响显著,这与在此阶段消化系统发育密切相关。湘华鲮为口下位鱼类,是浅水急流生境的一种代表性鱼类,研究湘华鲮仔稚鱼消化系统可以为口下位及浅水急流生境鱼类仔稚鱼转食提供重要参考。

本课题组自2006年一直开展湘华鲮人工驯化与繁殖技术研究[3-4,17], 2007—2021年共繁殖湘华鲮鱼苗865万尾,极大地促进了湘华鲮种业的发展。然而,由于湘华鲮口下位以及特殊的摄食要求等,养殖湘华鲮存在生长速度慢的问题,成为产业规模化推广的瓶颈之一。开展消化系统研究是认识和探究鱼类摄食、消化和吸收等生理机制的基础,因此也是繁育湘华鲮苗种、开发成鱼饲料促进鱼体生长的重要基础。目前,对湘华鲮仔稚鱼消化系统的组织发育学研究仍鲜有报道,本研究旨在探索湘华鲮仔稚鱼消化系统发育规律,观察其消化系统的形成、分化以及发育的基本特征,为消化生理和摄食转变等研究提供基础资料;掌握其主要消化器官功能完善的过程,为湘华鲮育苗中饵料的合理选择提供理论依据,提高苗种培育的存活率和生长率,促进湘华鲮养殖产业发展。

1 材料与方法 1.1 实验材料

本研究的实验材料为出膜后0~80日的湘华鲮仔稚鱼,取自怀化洪江电站网箱,一共取样17次,分别为受精卵出膜后第2、4、6、9、10、11、13、19、20、21、22、23、34、37、43、46、80天,每次随机取样15尾。

1.2 实验方法

将整条仔鱼或稚鱼保存于波恩氏液中,固定24 h后,于70%乙醇中长期保存。固定好的样品,经50%~100%梯度乙醇脱水、二甲苯透明、石蜡包埋及切片机连续切片(厚度5 μm)。其中,多采用纵切,在部分时期的唇、前肠、中肠处也采用了横切,部分腭采用平切。松节油脱蜡、苏木精-伊红(hematoxylin-eosin, HE)染色,中性树胶封片、制片。每个时间点随机选取10尾进行切片,每张片相应部分取30个视野进行计数、比较分析,在显微镜(Olympus)下观察、测量、拍照。

采用SPSS Statistics 22.0对试验数据进行统计学分析。

2 结果与分析 2.1 口咽腔

鱼类的口腔与咽喉并没有明显的分界线,统称为口咽腔。本研究按照秉志[18]的方式将口咽腔分为口腔和咽喉分别进行描述。

2日龄口腔开始发生,头部腹面由外向内凹陷形成口裂雏形,呈半弧形,口与咽腔未贯通,口腔黏膜上皮细胞1~2层,深层结缔组织发育中,肌层未形成,未见味蕾和黏液细胞(图1a)。4日龄口腔黏膜上皮表面出现角质层,黏膜上皮细胞有5~6层,出现少量味蕾,无黏液细胞(图1b)。6日龄口裂加深,呈“>”形,吻部初具形状,黏膜上皮中初现少量圆形且较大的黏液细胞(图1c)。9日龄口腔上皮出现黏膜层和黏膜下层,吻部黏膜层最外层为复层扁平上皮细胞,往下的上皮细胞多为圆形,排列紧密,紧挨着排列整齐的味蕾;黏膜下层为一层较薄的结缔组织(图1d)。10日龄,唇部细胞出现角质化趋势,细胞较大,椭圆形或圆形,着色较浅;腭的黏膜上皮加厚,黏液细胞增多,腭褶隆起处上皮细胞5~6层,凹陷处或平滑处均为1~2层,口腔底部黏膜形成发达的横纹肌;舌肌骨上的黏膜上皮细胞2层,最外一层有大量的黏液细胞,排列整齐(图1e)。11日龄口腔顶部腭褶隆起处形成味蕾(图1f)。13日龄口腔内部原先的腭褶加深加厚,黏液细胞渐多渐大(图1g)。19日龄吻部黏膜上皮中分布有黏液细胞,味蕾发育成熟,唇部角质化梳状突起顶端尖锐,排列密集,腭褶的黏膜上皮表面几乎全为杯状细胞,呈圆形或梨形(图1h)。23日龄到43日龄,口腔内部腭褶逐渐增多增长,黏膜层增厚,腭褶上的黏液细胞逐渐增多(图1i)。

4日龄咽喉黏膜上皮细胞分化为复层扁平上皮组织;咽喉前部上皮细胞被稀疏的结缔组织包围;咽喉后部,即鳃弓对应的位置开始,上皮细胞渐大,细胞层数增多,最外一层为扁平上皮细胞,着色深,黏膜下层并不明显,咽喉中部的黏膜层有较多的结缔组织深入包围细胞(图1j)。6日龄咽喉黏膜层增厚,出现少量的黏液细胞和味蕾(图1k)。胼胝垫出现角质化,角质化区域着色较深且均匀(图1l)。9日龄咽喉黏膜层表面黏液细胞和味蕾增多,肌层变厚,特别是咽喉后部的胼胝垫处,肌层发达;胼胝垫对侧的黏膜层开始凹陷形成皱褶(图1m、1n)。10日龄咽喉的味蕾发育成熟,整个咽喉都分布有味蕾和黏液细胞(图1o),咽前部黏膜层下出现一层薄薄的平滑肌,角质化的胼胝垫表面形成与唇部相似的梳状突起(图1p)。13日龄,咽中部的黏膜层和黏膜下层较咽后部薄,分布有大量黏液细胞和味蕾。黏液细胞较大,多为梨形,其长轴几乎与黏膜层和黏膜下层的厚度等长。咽喉后部的黏液细胞和味蕾减少。胼胝垫已成型,与成鱼相似,胼胝垫对侧的黏膜层形成与食管相似的皱褶(图1q)。20日龄,咽前部黏膜层下出现肌层,为纵形的横纹肌。咽后部有大量的味蕾密集排列,胼胝垫向两端延长,内部有结缔组织乳头深入,胼胝垫对侧的黏膜层皱褶极明显,内陷呈“凹”形(图1r)。22日龄,咽喉组织结构与成鱼近似,由黏膜层、黏膜下层、肌层、浆膜组成,其中黏膜层和肌层特别发达,咽喉前中部的黏膜层表面几乎全为黏液细胞,味蕾等间距分布,味蕾存在部位,黏膜层稍稍隆起(图1s),咽后部黏液细胞分布减少,但味蕾分布密集,且咽后部黏膜层稍下陷形成皱褶;肌层为内纵外环,环肌较纵肌发达(图1t)。43日龄,皱褶发育已成熟,咽喉中部亦有密集皱褶(图1u)。

图1  湘华鲮仔稚鱼口咽腔发育的组织结构a. 2日龄口腔;b. 4日龄口腔黏膜上皮横切面;c. 6日龄口腔;d. 9日龄下唇口腔黏膜横切面;e. 10日龄口腔;f. 11日龄口腔;g. 13日龄口腔;h. 19日龄口腔;i. 23龄口腔;j. 4日龄咽喉、食道;k. 6日龄咽喉;l. 6日龄咽喉痂垫;m. 9日龄咽喉、鳃耙;n. 9日龄咽喉痂垫;o. 10日龄咽喉、鳃耙;p. 10日龄咽喉痂垫;q. 13日龄咽喉、食道;r. 20日龄痂垫;s. 22日龄咽喉前中部;t. 22日龄咽喉中后部;u. 43日龄咽喉中部。APE:前咽喉上皮;B:基膜;Cm:环肌;CP:痂垫;GA:鳃弓;GM:鳃耙黏膜层;GR:鳃耙;KC:角质化细胞;Lm:纵肌;LM:肌层;m:口腔;M:黏膜层;MC:黏液细胞;OE:食道;OF:食道皱褶;OM:口腔黏膜;PC:咽喉;PF:腭褶;PM:腭黏膜;PMF:咽喉黏膜皱褶;SM:黏膜下层;SSE:覆层扁平上皮;TB:味蕾;Ys:卵黄囊 (标尺=100 µm). Fig. 1  Histological observation of the development of buccopharyngeal cavity of larva and juvenile of  Sinilabeo. decorus tungtinga. The buccopharyngeal cavity of 2 DPH larva; b. transverse section of oral mucosal epithelium of 4 DPH larva; c. The buccopharyngeal cavity of 6 DPH larva; d. transverse section of oral mucosal eclabium of 9 DPH larva; e. Buccal cavity of 10 DPH larva; f. Buccal cavity of 11 DPH larva; g. Buccal cavity of 13 DPH larva; h. Buccal cavity of 19 DPH larva; i. Buccal cavity of 23 DPH larva; j. Pharyn cavity and oesophagus of 4 DPH larva; k. Pharyn cavity of 6 DPH larva; l. Callous pad of pharyn cavity of 6 DPH larva; m. Pharyn cavity and gill rake of 9 DPH larva; n. Callous pad of pharyn cavity of 9 DPH larva; o. Pharyn cavity and gill rake of 10 DPH larva; p. Callous pad of pharyn cavity of 10 DPH larva; q. Pharyn cavity and oesophagus of 13 DPH larva; r. Callous pad of pharyn cavity of 20 DPH larva ; s. Anterior and middle pharyn cavity of 22 DPH larva; t. Middle and hind pharyn cavity of 22 DPH larva; u. Middle pharyn cavity of 43 DPH juvenile. APE: anterior pharyn epithelium; B: basilement; Cm: circular muscle; CP: callous pad; GA: gill arch; GM: gill rake mucosa; GR: gill rake; KC: keratinocyte cell; Lm: longitudinal muscle; LM: lamina muscularis; m: mouth; M: mucosal layer; MC: mucosa cell; OE: oesophagus; OF: oesophagus fold; OM: oral mucosa; PC: pharyn cavity; PF: palatine fold; PM: palate mucosa; PMF: pharyngeal mucosa folds; SM: submucosa; SSE: stratified squamous epithelium; TB: taste bud; Ys: yolk sac (scale bar=100 µm).
2.2 鳃

4日龄初现鳃弓,无黏液细胞;鳃弓两侧向咽腔内突出,形成花蕾状的鳃耙雏形(图1j)。6日龄鳃弓黏膜上皮增厚,出现黏液细胞和味蕾(图1k)。9~34日龄,鳃耙逐渐增长,鳃耙基底部细胞群和鳃弓的黏膜层逐渐增厚,鳃耙顶端上有味蕾存在(图1o、1s、2b)。11日龄,鳃弓黏膜层下肌层开始发育(图2a)。34日龄,鳃耙长度基本达到峰值,顶端尖锐,为味蕾顶端突出所致,鳃耙骨骼逐渐发育(图2d)。43日龄,鳃耙顶端稍膨大,无黏液细胞,表面平整,有味蕾突出,支撑骨骼明显,两侧的黏膜层表层几乎全为黏液细胞(图2e)。

图2  湘华鲮仔稚鱼鳃耙、食道及肝胰脏发育组织学a. 11日龄鳃耙;b. 19日龄鳃耙;c. 23日龄鳃耙;d.34日龄鳃耙;e. 43日龄鳃耙;f. 6日龄食道;g. 9日龄食道;h. 11日龄食道;i. 19日龄食道;j. 22日龄食道;k. 6日龄肝胰脏;l. 22日龄肝胰脏;AE:食道前部;AIC:前肠腔;BC:胆管;CV:中央静脉;DM:发育中的肌层;GA:鳃弓;Gb:鳃耙基部;GB:鳃耙骨骼;GM:鳃耙黏膜层;GR:鳃耙;GT:鳔管;H:肝索;HE:食道后部;Hs:肝血窦;L:肝脏;Lc:肝细胞;LM:肌层;M:黏膜层;OF:食道皱褶;P:腭;Pc:胰腺细胞;S:浆膜层;SM:黏膜下层;TB:味蕾;V:空泡(肝)(标尺=100 µm). Fig. 2  Histological observation of the development of gill rake, oesophagus and hepatopancreas of larva and juvenile S. decorus tungtinga. Gill rake of 6 DPH larva; b. Gill rake of 9 DPH larva; c. Gill rake of 11 DPH larva; d. Gill rake of 19 DPH larva; e. Gill rake of 22 DPH larva; f. Oesophagus of 11 DPH larva; g. Oesophagus of 19 DPH larva; h. Oesophagus of 23 DPH juvenile; i. Oesophagus of 34 DPH juvenile; j. Oesophagus of 43 DPH juvenile; k. Hepatopancreas of 6 DPH larva; l. Hepatopancreas of 22 DPH larva; AE: anterior oesophagus; AIC:anterior intestines cavity; BC: bile capillary; CV: center vein; DM: developing muscle; GA: gill arch; Gb: gill rake basement; GB: gill rake bone; GM: gill rake mucosa; GR: gill rake; GT: gas bladder tube; H:hepaticcord; Hs: hepatic sinusoid; HE: hind oesophagus; L: liver; Lc: liver cells; LM: lamina muscularis; M: mucosal layer; OF: oesophagus fold; P: palate; Pc: pancreatic cells; S: serosal layer; SM: submucosa; TB: taste bud; V: vacuoles (liver)(Scale bar=100 µm).
2.3 食管

4日龄的仔鱼食管黏膜层细胞分化,黏膜层细胞与咽后部的黏膜层细胞很相似(图1j)。6日龄食管分为前后两部分,前食管黏膜层细胞排列疏松,有大量的黏液细胞,后食管黏膜层无黏液细胞,上皮组织与前肠十分相似,为细长且排列紧密的柱状上皮细胞;肌层变厚,环形肌为主;黏膜层、黏膜下层、肌层界限分明(图2f)。9日龄前食道黏膜层、黏膜下层深入管腔内形成一条长纵褶,纵褶长度略短于食管长度;整个食道的肌层主要为发达的环形横纹肌,纵肌不明显,后食管肌层较前食管更发达(图2g)。11日龄前后食管均形成纵褶,纵褶数量和高度均增加,顶端呈尖锐的角状,纵褶黏膜层细胞几乎全为黏液细胞(图2h)。13~22日龄,食管皱褶一直在发育中,原有的纵褶黏膜层加厚,同时,食管形成新的低矮的扇形皱褶,这些扇形皱褶逐渐发育成长的纵褶(图2i、2j3h)。22日龄,食管组织与成鱼相似,纵褶发达,食管由黏膜、黏膜下层、肌肉层和浆膜层构成,黏膜层发达,黏膜下层中有较多疏松的结缔组织,细胞松散,肌层中内环肌尤为发达,外纵肌不连续,不发达;前后食管的区别主要在黏膜层和肌层,前食管黏膜层有大量的黏液细胞和少量味蕾,后食管无黏液细胞、味蕾,后食管肌层更厚(图2k)。

2.4 肠

参照湘华鲮成体消化系统研究结果[17],将仔稚鱼肠道分为前肠、中肠、后肠进行描述。2日龄仔鱼肠道贯通,形成肠腔,直管状,肛门与外界相通(图3a);肠道上皮细胞分化为柱状上皮细胞,细胞质中形成嗜碱性致密颗粒,无黏液细胞,前肠细胞排列整齐,胞质和胞核界限清晰(图3b),往后细胞逐渐排列疏松。4日龄,肠道仍是直管状,肠道表皮有轻微起伏,嗜碱性致密颗粒大量增加;前肠肠腔膨大,细胞表面特化出一层细密的泡沫状结构,无杯状细胞(图3c);中肠管径变窄,无杯状细胞;后肠上皮细胞椭圆形或圆形,细胞较前中肠细胞小,出现了少量的杯状细胞,细胞质中嗜碱性致密颗粒较前中肠更密集(图3d)。6日龄肠表皮出现皱褶和纹状缘;前肠黏膜层深入管腔形成长条状皱襞,皱襞间出现少量杯状细胞(图3e),往中肠方向走,皱襞逐渐变短,呈扇形状,无黏液细胞;后肠无明显皱褶,仅黏膜层轻微凹陷,杯状细胞和致密颗粒增多(图3f)。9日龄整个肠道均分布有杯状细胞,后肠段最多;肠道皱襞继续发育,细胞表面特化形成独特的空泡结构,几乎充满整个肠腔,前中后肠的空泡形态均有所不同,发育不同步;中肠、后肠壁肌层均明显,其中后肠肌层较中肠发达(图3g、3h)。13日龄,卵黄囊完全消失,肠表皮上的空泡结构也逐渐消失;整个肠道根据黏膜层的形态明显分为前、中、后三部分,前肠肠道内缢形成大的皱襞,中肠黏膜层较平滑,后肠黏膜层凹陷形成皱褶,基本可见成鱼肠道的结构雏形(图3i)。19日龄,肠道向管腔内缢形成肠皱褶(图3j)。20日龄,肠道组织结构基本发育完善。整个肠道纹状缘发达,前肠或黏膜层深入管腔形成柳叶状纵褶(图3k),或整个肠道向管腔内缢形成皱襞(图3l),两种皱襞的顶端均为尖角状,细胞细长,排列紧密;中肠黏膜层向肠腔突起形成低矮的形态不一的皱襞,或顶端膨大呈扇形,或皱褶宽度与基底部一致呈方形(图3m);后肠皱褶多为方形,柱状上皮细胞游离面极发达(图3n)。43日龄,近肛门处的后肠黏膜层和黏膜下层向腔内伸出较长的纵褶,纵褶与肠道平行,细胞游离面发达,黏液细胞密集(图3o)。

2.5 肝胰脏

2日龄肝细胞团紧紧围绕在前肠周围,肝细胞较大,圆形或椭圆形,胞核清晰,排列紧密,形成肝细胞索(图3b)。4日龄,肝细胞团体积增大,填充于卵黄囊与消化道间,胞质着色较浅,核圆居中,着色深,出现肝血窦;肝细胞中出现多个被染成红色的胰腺细胞团,每个细胞团仅由1~4个胰腺细胞组成,核大清晰,着色深(图3c)。6日龄的肝细胞间形成大量空泡,肝细胞变小(图2k)。6~22日龄,肝胰脏组织结构逐渐发育成型,肝血窦、肝索增多,弥散在肝脏中的胰腺细胞团体积不断增大。22日龄,肝脏被致密的浆膜包裹,肝脏中肝血窦、肝索丰富,肝细胞以中央静脉为中心,呈放射状排列,组织结构特点与成鱼相似(图2l)。

图3  湘华鲮仔稚鱼肠道发育的组织结构a. 2日龄肠道;b. 2日龄肠道、肝脏;c. 4日龄前肠、肝脏;d. 4日龄后肠;e. 6日龄前肠皱襞;f. 6日龄后肠;g. 9日龄中后肠皱襞;h. 9日龄后肠皱襞;i. 13日龄肠道;j. 19日龄肠皱襞;k. 20日龄前肠;l. 20日龄前肠皱襞;m. 20日龄中肠皱褶;n. 20日龄后肠皱褶;o. 43日龄后肠纵褶;AI:前肠;AIF:前肠褶皱;BB:纹状缘;GC:杯状细胞;HI:后肠;HIF:后肠褶皱;I:肠;IC:肠腔;IF:肠褶皱;L:肝脏;LC:肝脏细胞;LM:肌层;M:黏膜层;MIF:中肠褶皱;Pc:胰腺细胞;SM:黏膜下层(标尺=100 µm). Fig. 3  Histological observation of the development of intestine of larva and juvenile of S. decorus tungtinga. Intestine of 2 DPH larva; b. Intestine and liver of 2 DPH larva; c. Anterior intestine and liver of 4 DPH larva; d. Hind intestine of 4 DPH larva; e. Anterior intestine fold of 6 DPH larva; f. Hind intestine of 6 DPH larva; g. Fold of middle and hind intestine of 9 DPH larva; h. Hind intestine fold of 9 DPH larva; i. Intestine of 13 DPH larva; j. Intestine fold of 19 DPH larva; k. Anterior intestine of 20 DPH larva; l. Fold of anterior intestine of 20 DPH larva; m. Fold of middle intestine of 20 DPH larva; n. Fold of hind intestine of 20 DPH larva; o. Fold of hind intestine of 43 DPH juvenile; AI: anterior intestine; AIF: anterior intestine fold; BB: brush border; GC: goblet cell; HI: hind intestines; HIF: hind intestines folds; I: intestine; IC: intestines cavity; IF: intestines fold; L: liver; LC: liver cells; LM: lamina muscularis; M: mucosal layer; MIF: middle intestines folds; Pc: pancreatic cells; SM: submucosa (Scale bar=100 µm).

37日龄,仔稚鱼肝胰脏、食管组织结构均似成鱼,发育基本完成。43日龄,口咽腔、鳃与肠道组织发育基本完成。

3 讨论 3.1 湘华鲮消化系统的早期发育

根据湘华鲮仔稚鱼消化系统发育的组织学特征,参照Buddington[19]的硬骨鱼类消化系统发育的划分标准,本研究将湘华鲮消化系统的发育分为3个阶段。第一阶段(0~3 d):口和肛门均与外界相通,形成肠腔,但口咽腔和食道未贯通,该期仔鱼不具备摄食和消化能力,属于卵黄期,卵黄提供给机体营养。第二阶段(4~13 d):仔鱼开口摄食,卵黄囊在脱膜后第13天被吸收完全。这个阶段属于混合性营养阶段,靠卵黄和外界摄食为生,该阶段是湘华鲮仔稚鱼食性转变的关键期,消化系统发育处于过渡阶段,而在此阶段及时提供适口饵料,是提高湘华鲮幼苗成活率的关键点。第三阶段(14~23 d):外源性营养阶段,各组织结构基本成型,与成鱼一致,消化管腔快速发育,与大多数鱼类发育规律一致[20-21]。随着时间推移,鱼体各项机能发育完善和成熟。Solovyev等[10]根据大西洋白姑鱼功能性胃的出现前后,将第3阶段细分为外源性营养Ⅰ期和Ⅱ期。杨佳喆等[22]也将褐菖鮋(Sebastiscus marmoratus)仔稚鱼消化系统的发育分为4个阶段。本研究发现,湘华鲮属于无胃鱼类,因此将其消化系统发育仅划分为3个阶段。

3.2 消化系统的组织学发育与食性的转化

口咽腔是鱼类从外界摄取营养物质第一通道。2日龄仔鱼口和咽腔形成,但是未贯通,此时消化系统功能尚不完善,靠卵黄提供能量。4日龄开口摄食,口咽腔上皮初现味蕾,有助于仔鱼选择食物,开始向混合性营养阶段转变,此时是人工苗种培养的关键期。6日龄仔鱼口裂形成,口咽腔内上皮的黏膜层上味蕾和黏液细胞逐渐增多,杯状细胞分泌的黏液有利于减少食物与黏膜的摩擦力,促进食物顺利通过口咽腔进入食道,同时也减少黏膜的损伤,咽腔中部至后部肌层较为发达,可以通过肌肉的收缩控制食物的吞咽[23-24]。此时,仔鱼可以开口吞食适口的常见浮游动物,如轮虫。10日龄唇部开始角质化,这与湘华鲮刮食性特点有关。而咽后部的胼胝垫已形成较成熟的梳状角质,湘华鲮的上下颌没有牙齿,不能咀嚼食物,只能由咽喉齿与胼胝垫研磨食物[25],如个体较大的浮游动物——枝角类。13日龄,唇部形成锋利的梳状角质结构,与其刮食的摄食方式相适应,其摄食方式的改变恰好与卵黄囊消失,向外源性营养阶段转变相适应。饥饿不可逆点(point of no return, PNR)是初次摄食期仔鱼耐受饥饿的临界点,超过PNR延迟投饵,直接影响仔鱼存活率和生长率[26]。掌握卵黄囊消失时间点,有助于确定鱼类PNR[27]。因此,在PNR之前保证湘华鲮仔鱼获得充足饵料,对提高其存活率具有重要意义。43日龄,咽腔中后部的黏膜层极发达,内陷形成密集皱褶,肌层发达,有助于将食物推入食道,咽后部发达的胼胝垫有助于研磨硅藻的硅质外壳。仔稚鱼口咽腔组织结构的发育与食性的改变是相适应的。

鳃耙的发育远慢于其他消化器官,43日龄的鳃耙基本发育成型,鳃耙过滤食物时,通过鳃弓和咽喉的肌肉收缩,鳃耙与咽喉中部发达的皱褶相互接触形成过滤网,相邻鳃耙虽然交错排列,不及鲢鳙鱼般细密的鳃耙网,只摄取个体较大的浮游藻类,与湘华鲮偏植物食性的特点相适应[17,25],也是湘华鲮等鲤科鱼类适应自然的结果。食道是食物由口咽腔进入肠内吸收消化的通道,4~6日龄仔鱼食道初现皱褶,前食道黏膜层黏液细胞数量逐渐增加。9~13日龄,仔鱼食道的纵褶数量、高度及表面积都显著增加,纵褶表面几乎全为黏液细胞,大量黏液的分泌有利于食物顺利通过食道进入肠腔,同时减少黏膜的损伤;食道黏液细胞分泌的黏液具有化学消化功能,同时发达的环形肌层有助于将食物推入肠腔进一步消化。13日龄仔鱼转变为外源性营养阶段也与上述结构发育逐步完善息息相关。

肠道是食物消化吸收的主要部位。湘华鲮仔鱼2日龄的肠道上皮细胞就开始分化,直管状的肠腔与卵黄囊紧密连接,有利于肠道对卵黄囊的吸收利用。湘华鲮仔鱼4日龄前肠上皮细胞表面出现细密的泡沫状结构,用于增大吸收的表面积;后肠大量的黏液细胞,有助于充分混匀湿润食物,帮助食物的吸收和残渣的排出,这与黄颡鱼(Pelteobagrus fulvidraco)结果一致[28]。6日龄,肠道出现皱褶和纹状缘,其表面积进一步增大。9~13日龄,肠道内的前中肠空泡结构发达,后肠上皮细胞胞质中含有大量嗜碱性致密颗粒,说明该时期肠道细胞主要通过胞饮和细胞内消化吸收获取能量,且前中肠主要吸收脂肪,后肠主要吸收蛋白质[29-30]。9日龄,后肠肠壁肌层显著厚于中肠,与后肠紧连着肛门控制排便的功能有关(图3g),也与湘华鲮成鱼消化系统研究结果一致[17]。13日龄以后,空泡结构和嗜伊红致密颗粒逐渐消失,具备成鱼肠道的结构雏形并逐渐发育完善,稚鱼开始靠肠道细胞的主动运输吸收营养物质。湘华鲮仔稚鱼肠道的发生,亦与其食性的转变相适应。

湘华鲮属无胃鱼,黏液细胞分泌多样化黏液以弥补胃结构的缺失,与大多数无胃鱼类似,整个消化管均分布大量黏液细胞[31]。肝胰脏在食物消化中具有重要作用,4日龄肝细胞团中出现胰腺细胞,开始通过分泌胰蛋白酶消化食物,与4日龄仔鱼开口摄食相适应。Marthinsen[29]研究发现肝脏中的空泡具有储存糖原的功能,本研究发现湘华鲮仔鱼在6日龄时,肝细胞中出现空泡,之后空泡不断增加,这表明6日龄,仔鱼肝脏可以储藏外源营养物质。随着稚鱼消化机制的健全,肝胰脏中空泡数量减少,标志着糖原形式的能量储备逐渐被消耗。22日龄,肝胰脏功能进一步完善,基本发育成湘华鲮成鱼肝胰脏结构。

4 结论

湘华鲮仔稚鱼的消化系统发育经历3个阶段,即卵黄期、混合性营养阶段以及外源性营养阶段。13日龄,卵黄囊消失,靠外源性营养提供能量,消化系统结构与功能已较完善,具备消化吸收外源营养的能力。22日龄左右,消化道组织结构与成鱼相似,逐渐发育完善。每一阶段食性的转变,始终是与消化系统组织器官结构的发育和变化相适应的。

参考文献
[1]
Wang B X, Liu S W, Tian X C. Preliminary observation on ecological investigation, artificial propagation and seedling cultivation of Sinilabeo decorus tungting[J]. Inland Fisheries, 1977, 1: 1-9. [王宾贤,刘素文,田习初. 湘华鲮的生态调查、人工繁殖与苗种培育的初步观察[J]. 内陆水产,1977, 1: 1-9.].》Google Scholar
[2]
Fisheries Research Institute of Hunan Province. Ichthyology of Hunan Province[M]. Changsha: Hunan People's Publishing House, 1976: 103-104. [湖南省水产科学研究所. 湖南鱼类志[M]. 长沙:湖南人民出版社,1976: 103-104.].》Google Scholar
[3]
Bian W, Li C W, Liang Z Q, et al. Biological characteristic and resource dynamic of Sinilabeo decorus tungting[J]. Journal of Hydroecology, 2011, 32(4): 67-73. [卞伟,李传武,梁志强,等. 湘华鲮的生物学特征及资源动态研究[J]. 水生态学杂志,2011, 32(4): 67-73.].》Google Scholar
[4]
Liang Z Q, Li C W, Ou L Y, et al. Analysis and evaluation of the nutrients compositions of the muscle of Sinilabeo decorus tungting (Nichols)[J]. Acta Nutrimenta Sinica, 2009, 31(4): 411-413. [梁志强,李传武,欧燎原,等. 湘华鲮肌肉营养成分分析与评价[J]. 营养学报,2009, 31(4): 411-413.].》Google Scholar
[5]
Nichols J T, Pope C H. Some Chinese fresh-water fishes[J]. American Museum Novitates, 1931, 449: 1-5..》Google Scholar
[6]
Liang Q S. Fish fauna of Hunan Province[J]. Journal of Hunan Normal University, 1966, 5: 85-111. [梁启燊. 湖南省的鱼类区系[J]. 湖南师范学院学报,1966, 5: 85-111]..》Google Scholar
[7]
Wu X W. Records of cyprinidae fishes in China (Volume II) [M]. Shanghai: Shanghai People’s Publishing House, 1977: 338-340. [伍献文. 中国鲤科鱼类志(下卷)[M]. 上海:上海人民出版社,1977: 338-340.].》Google Scholar
[8]
Wang B X, Liu S W, Tian X C. Studies on the biology of Sinilabeo decorus tungting[J]. Acta Hydrobiologica Sinica, 1982, 6(4): 455-467, 469. [王宾贤,刘素文,田习初. 湘华鲮的生物学研究[J]. 水生生物学集刊,1982, 6(4): 455-467, 469.].》Google Scholar
[9]
Zhao M J, Huang W Y, Wang Z X. The effects of temperature on the embryonic and postembryonic development of Sinilabeo decorus tungting (Nichols)[J]. Journal of Fisheries of China, 1982, 6(4): 345-349. [赵明蓟,黄文郁,王祖熊. 温度对于湘华鲮胚胎与胚后发育的影响[J]. 水产学报,1982, 6(4): 345-349..》Google Scholar
[10]
Solovyev M M, Campoverde C, Öztürk S, et al. Morphological and functional description of the development of the digestive system in meagre (Argyrosomus regius): An integrative approach[J]. Aquaculture, 2016, 464: 381-391..》Google Scholar
[11]
Wu X F, Zhao J L, Qian Y Z, et al. Histological study of the digestive system organogenesis for the mandarin fish, Siniperca chuatsi[J]. Zoological Research, 2007, 28(5): 511-518. [吴雪峰,赵金良,钱叶洲,等. 鳜消化系统器官发生的组织学[J]. 动物学研究,2007, 28(5): 511-518.].》Google Scholar
[12]
Nie G F, Li J E, Ou Y J, et al. Histological studies on post- embryonic development of the digestive system in larval, juvenile, and young Liza haematocheila[J]. Journal of Fishery Sciences of China, 2016, 23(1): 90-103. [聂广锋,李加儿,区又君,等. 梭鱼仔、稚、幼鱼消化系统胚后发育的组织学观察[J]. 中国水产科学,2016, 23(1): 90-103.].》Google Scholar
[13]
Ou Y J, Li J E, Ai L. A study on the histology of digestive system in early life stages of Oplegnathus fasciatus[J]. Journal of South China Agricultural University, 2015, 36(1): 23-27. [区又君,李加儿,艾丽. 条石鲷早期发育阶段消化系统组织学研究[J]. 华南农业大学学报,2015, 36(1): 23-27.].》Google Scholar
[14]
Shu Q L, Huang J, Xu X, et al. Effects of changing to different diets on the growth and survival of Coreius guichenoti larvae[J]. Hubei Agricultural Sciences, 2020, 59(4): 129-131, 140. [舒旗林,黄晋,胥贤,等. 不同转食饵料对圆口铜鱼幼苗存活及生长的影响[J]. 湖北农业科学,2020, 59(4): 129-131, 140.].》Google Scholar
[15]
War M. Growth and survival of larval snakehead Channa striatus (Bloch, 1793) fed different live feed organisms[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2011, 11(2011): 523-528..》Google Scholar
[16]
Khoa T N D, Waqalevu V, Honda A, et al. An integrative description of the digestive system morphology and function of Japanese flounder (Paralichthys olivaceus) during early ontogenetic development[J]. Aquaculture, 2021, 531: 735855..》Google Scholar
[17]
Liang Z Q, Li C W, Liu M Q, et al. Morphological and histological observation of the digestive system in Sinilabeo decorus tungting (Nichols)[J]. Journal of Fishery Sciences of China, 2011, 18(5): 1051-1060. [梁志强,李传武,刘明求,等. 湘华鲮消化系统的形态学与组织学研究[J]. 中国水产科学,2011, 18(5): 1051-1060.].》Google Scholar
[18]
Bing Z. Carp organization[M]. Beijing: Science Press, 1983: 16-21. [秉志. 鲤鱼组织[M]. 北京:科学出版社,1983: 16-21]..》Google Scholar
[19]
Buddington R K. Digestive secretions of lake sturgeon, Acipenser fulvescens, during early development[J]. Journal of Fish Biology, 1985, 26(6): 715-723..》Google Scholar
[20]
Riar M G S, Ara R, Amin S M N, et al. Morphological characteristics of Tenualosa ilisha (Hamilton 1822) larvae collected from lower Meghna River of Bangladesh[J]. Journal of Environmental Biology, 2020, 41(5(SI)): 1365-1370..》Google Scholar
[21]
Kumar A, Pradhan P K, Chadha N K, et al. Ontogeny of the digestive tract in stinging catfish, Heteropneustes fossilis (Bloch) larvae[J]. Fish Physiology and Biochemistry, 2019, 45(2): 667-679..》Google Scholar
[22]
Yang J Z, Qi C, Xu S L. Histological studies on development of the digestive system in larval and juvenile Sebastiscus marmoratus[J]. Journal of Tropical Oceanography, 2019, 38(2): 58-66. [杨佳喆,齐闯,徐善良. 褐菖鲉仔、稚鱼消化系统发育的组织学观察[J]. 热带海洋学报,2019, 38(2): 58-66.].》Google Scholar
[23]
Hu P, Gong X, Han Y Z, et al. Ontogenetic morphological and histological development of digestive system in larval Pacific cod Gadus macrocephalus[J]. Journal of Dalian Ocean University, 2015, 30(3): 243-247. [胡盼,宫雪,韩雨哲,等. 太平洋鳕仔鱼消化系统发育形态学和组织学观察[J]. 大连海洋大学学报,2015, 30(3): 243-247.].》Google Scholar
[24]
Yang R B. Study on ontogenetic development of the digestive system and feeding in yellow catfish Pelteobagrus fulvidraco larvae[D]. Wuhan: Huazhong Agricultural University, 2010. [杨瑞斌. 黄颡鱼仔稚鱼消化系统发育及摄食特性的研究[D]. 武汉:华中农业大学,2010.].》Google Scholar
[25]
Su J, Wen A X. An initial research on the structure and function of the wild and farmed carp oropharyngeal cavity palate[J]. Journal of Biology, 2013, 30(1): 39-42. [苏健,温安祥. 野生和人工养殖鲤鱼口咽腔腭部结构与功能的初步研究[J]. 生物学杂志,2013, 30(1): 39-42.].》Google Scholar
[26]
Li Q, Yao M, Du J, et al. Study on growth and development of early postembryonic stage of Onychostoma sima[J]. Agricultural Science & Technology, 2013, 14(2): 354..》Google Scholar
[27]
Zhang J M. Starvation and determination of point of no return in Schizothorax prenanti larvae[J]. Fisheries Science, 2020, 39(4): 532-538. [张建明. 齐口裂腹鱼仔鱼饥饿试验及不可逆生长点的确定[J]. 水产科学,2020, 39(4): 532-538.].》Google Scholar
[28]
Yang R B, Xie C X, Fan Q X, et al. Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae[J]. Aquaculture, 2010, 302(1-2): 112-123..》Google Scholar
[29]
Marthinsen J L. Ontogeny of the digestive system in lumpfish (Cyclopterus lumpus) larvae in relation to growth and start feeding diet-A histological and stereological approach[D]. Trondheim: Norwegian University of Science and Technology, 2018..》Google Scholar
[30]
Ofelio C, Cohen S, Adriaens D, et al. Histochemistry of goblet cells and micro-computed tomography to study the digestive system in the long-snouted seahorse Hippocampus guttulatus[J]. Aquaculture, 2019, 502: 400-409..》Google Scholar
[31]
Banan-Khojasteh S M. The morphology of the post-gastric alimentary canal in teleost fishes: a brief review[J]. International Journal of Aquatic Science, 2012, 3(2): 71-88..》Google Scholar