2. 佛山市南海区杰大饲料有限公司,广东 佛山 528211
3. 广东省农业科学院动物卫生研究所,广东 广州 510640
2. Foshan Nanhai Jieda Feed Co., Ltd., Foshan 528211, China
3. Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
鳜(Siniperca chuatsi)俗称桂花鱼,是属于鲈形目、真鲈科、鳜属的名贵淡水经济鱼类。鳜味道鲜美、无肌间刺、营养丰富且胆固醇含量低,具有很高的经济和营养价值。自从鳜人工繁殖技术取得突破后,鳜的养殖面积和产量迅速提高,据统计,2020年我国鳜养殖总产量达到3.77×105 t,但目前主要以饵料鱼投喂为主。利用饵料鱼投喂不仅造成渔业资源浪费,而且存在病害交叉感染的风险。随着鳜摄食机理的解析、驯化技术的进步以及配合饲料配方的不断优化,目前已经初步实现了鳜配合饲料养殖[1-3]。但在配合饲料养殖过程中,由于饲料营养不均衡、养殖密度高等原因,导致鳜免疫力下降,病害频发,肝脏和肠道健康也面临威胁。因此,只有不断优化饲料配方,解决上述问题才能使配合饲料在鳜养殖中得到推广使用。目前,在饲料中添加中草药来预防疾病、提高水产动物免疫力和改善肝肠健康已成为一种趋势[4-8]。
桑树(Morus alba L.)为桑科桑属多年生木本植物,具有适应性强、产量高、营养丰富等特点,在我国广泛种植[9]。桑树是卫生部公布的药食两用植物之一,被广泛用作食品和中草药原料[10-11]。桑叶中因富含生物碱、黄酮、多糖、多酚等天然活性物质[11-12],具有抗菌[13]、抗氧化[14]、抗病毒[15]、降血糖[16]、降血脂[17]和抗炎[18]等多种功效,是一种良好的饲料原料。但由于桑叶中含有单宁、植物凝集素等抗营养因子,且具有涩味,直接添加至饲料中会降低动物采食量,影响生长,限制了桑叶在饲料中的应用[19]。但通过提取可有效保留桑叶中的活性成分,同时去除抗营养因子。
桑叶水提物(mulberry leaf water extract, MLWE)是由晒干粉碎后的桑叶粉经过水溶剂加热提取后得到的混合物,含有桑叶多糖、桑叶黄酮等多种活性成分[20]。目前对桑叶提取物的研究主要集中在提取工艺[21]、药理活性[22]、临床应用[23]、功能成分分析[11]等方面,在水产养殖中的应用研究较少。Li等[24]研究发现,日粮中添加桑叶提取物可改善大鲵(Andrias davidianus)的生长性能,提高饲料利用率,改善肠道和肝脏的抗氧化能力。同样,在饲料中添加桑叶黄酮不影响凡纳滨对虾的生长性能和体成分,但显著提高凡纳滨对虾的抗氧化能力,而且可以促进肠道发育,提高肠道菌群多样性[25-26]。在饲料中添加桑叶黄酮也不影响吉富罗非鱼的生长性能,但显著提高血清和肝脏的抗氧化能力,增强吉富罗非鱼抗亚硝酸盐应激的能力[27]。另外,在饲粮中添加5 g/kg的白桑叶提取物可提高尼罗罗非鱼的免疫和抗氧化能力,增强对嗜水气单胞菌的防御能力[28]。目前,没有在鳜饲料中添加桑叶提取物的研究报道。因此,本研究旨在研究3种不同MLWE添加水平对鳜生长、脂质代谢、抗氧化能力、肝脏和肠道组织形态的影响,以期为桑叶水提物在鳜饲料中的合理应用提供依据。
1 材料与方法 1.1 桑叶水提物的提取工艺 1.1.1 样品预处理将采摘的新鲜桑叶洗净晒干后粉碎,通过60目筛网得到桑叶粉。将桑叶粉装入烧瓶中,加入20倍体积的石油醚,静置过夜,然后60 ℃水浴回流处理2 h,过滤后弃滤液,将滤渣风干后备用。
1.1.2 桑叶水提物提取工艺称取一定量预处理过的桑叶粉,置于烧瓶中,加入30倍体积的蒸馏水,100 ℃水浴回流提取60 min,过滤得到过滤液,滤渣加入30倍体积的蒸馏水后继续进行回流提取,重复提取2次。将3次过滤液合并后进行减压浓缩和冷冻干燥,得到桑叶水提物粉末(其中,桑叶多糖含量为352.18 mg/g;桑叶黄酮含量为41.91 mg/g), 4 ℃保存备用。
1.2 实验饲料以鱼粉、豆粕等为蛋白源,以鱼油、豆油等为脂肪源,配制鳜基础配合饲料。在基础配合饲料中分别添加0、0.1%、0.2%和0.5%的桑叶水提物,制成4组等氮等脂膨化饲料。饲料配方及营养水平如表1所示。膨化饲料制备方法如下:按表1中的饲料配方称取各原料后混合均匀,用超微粉碎机进行粉碎,通过250 μm的筛网进行过滤;将混合均匀的原料移入调制解调器,通入102 ℃的水蒸气调制8 min,在95 ℃的温度下利用双螺杆挤压膨化机(DCSP96×2-110KW)进行挤压膨化制粒,饲料直径为2.5 mm,长度为5 mm;在80 ℃条件下将饲料颗粒烘干,饲料由佛山市南海区杰大饲料有限公司(佛山)代加工。制备好的饲料分装后储存于4 ℃冰箱备用。
1.3 饲养管理养殖试验在佛山市南海区杰大饲料有限公司养殖基地内的室内循环水养殖系统中进行,养殖系统由12个养殖桶(有效体积为400 L)和1个过滤系统组成,养殖水源为经过过滤、消毒、曝气处理后的自来水。试验所用翘嘴鳜苗购自佛山市三水区合洋水产有限公司,能够正常采食配合饲料。先用基础膨化饲料试养14 d,然后选择体质健壮、大小均匀的鳜苗(42.35±0.07) g 540尾,随机分成4组,每组3个重复,每个重复45尾鱼,开始正式实验,实验周期为72 d,日投饲率为体重的2%~3%,每天8:30~9:00、16:00~16:30各投喂1次,将投喂后半个小时内未吃完的饲料捞出后烘干称重,准确记录每次投喂后鳜吃料重量。实验期间严格记录死鱼数量和重量,养殖结束后称量鱼的总重量,用于终末体均重、增重率、特定生长率、饲料系数和成活率的统计分析。实验期间控制养殖水温为25~30 ℃,溶解氧为6.0~8.5 mg/L, pH为7.2~8.0,氨氮浓度≤0.10 mg/L,亚硝酸盐氮浓度≤0.05 mg/L。
![]() |
表1 实验饲料组成及营养水平(风干基础) Tab. 1 Composition and nutrient levels of feeds (DM basis) % |
采集样品前,先对试验鳜禁食24 h,然后每个养殖桶随机取5尾鱼(每个组共15尾),用MS-222麻醉后,测量体长和体重,用注射器进行尾部静脉采血,将血液室温静置2 h,然后在4 ℃条件下3000 r/min离心10 min,取上层血清保存于–20 ℃冰箱,用于血清脂质指标、抗氧化指标和酶活性测定。然后将鳜进行解剖,并分别测定内脏、肝胰脏和肠道的重量,用于脏体指数、肝体指数、肠体指数和肥满度的统计分析。另外,每个组随机取9尾鱼(每个桶3尾),分离肠道,去除肠道表面脂肪,分别取长度约1 cm的中肠,用3%多聚甲醛固定液固定,用于石蜡组织切片;分离出肝脏,在相同部位切取约0.5 cm3的肝脏,用3%多聚甲醛固定液固定,用于石蜡组织切片。
1.5 指标测定 1.5.1 生长及形体指标测定根据实验统计数据,参照文献实验方法[29]进行生长指标和形体指标的测定,计算公式如下:
增重率(weight gain rate, WGR, %)=(Wt–W0)/W0× 100%;
肥满度(condition factor, CF, g/cm3)=Wt/L3× 100;
特定生长率(specific growth rate, SGR, %/d)= (lnWt−lnW0)/t×100%;
脏体指数(viscera somatic index, VSI, %)= Wv/Wt×100%;
肝体指数(hepatopancreas somatic index, HSI, %)= Wh/Wt×100%;
肠体指数(viserosomatic index, VI, %)=Wi/Wt× 100%;
饲料系数(feed conversion ratio, FCR)= F/(Wt–W0);
存活率(survival rate, SR, %)=Nt/N0×100%。
式中,Wt和W0分别为实验鱼的终末体重和初始体重(g), t为养殖实验天数(d), F为饲料摄入量(g), N0和Nt分别为实验开始和结束时实验鱼的尾数(尾), L为鱼体长(cm), Wv为内脏重量(g), Wh为肝胰脏重量(g), Wi为肠道重量(g)。
1.5.2 脂质代谢指标测定血清甘油三酯(TG)、总胆固醇(T-CHO)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)等指标均采用南京建成生物工程研究所试剂盒进行测定,具体测定方法参照试剂盒所附说明书。
1.5.3 抗氧化指标测定采用南京建成生物工程研究所的试剂盒分别对血清总抗氧化能力(T-AOC)、过氧化氢酶(CAT)、超氧化物歧化酶(T-SOD)和还原性谷胱甘肽(GSH)等抗氧化指标进行测定,具体的测定方法参照每个试剂盒的说明书进行。
1.5.4 肠道和肝脏组织切片的制备及观察将多聚甲醛溶液固定好的肠道和肝脏组织进行石蜡包埋,制作石蜡切片,切片厚度为6 μm,用苏木素-伊红(HE)染色。采用全景切片数字扫描仪(PANNORAMIC-1000, 3DHISTECH)对切片进行扫描拍照,利用CaseViewer2.2 (3DHISTECH)软件截取切片组织照片,然后使用Image-Pro Plus 6.0 (Media Cybemetics)分析软件分别测量肠绒毛高度、绒毛宽度和肌层厚度,每个切片分别测量5组数值。
1.6 数据处理和统计分析试验结果均用平均数±标准差($\bar{x}\pm \text{SD}$)进行展示,差异显著性分析采用SPSS 26.0软件中的单因素方差分析(one-way ANOVA)和Duncan氏多重比较检验进行比较分析,P<0.05表示差异显著。
2 结果与分析 2.1 桑叶水提物对鳜生长性能的影响经过72 d养殖试验后,桑叶水提物对各组鳜生长性能的影响见表2。与对照组相比,在饲料中添加0.1%、0.2%和0.5%的桑叶水提物不影响鳜的终末体均重、增重率、特定生长率、饲料系数和成活率(P>0.05)。
![]() |
表2 桑叶水提物对鳜生长性能的影响 Tab 2 Effects of MLWE on growth performance of Siniperca chuatsi n=3; $\bar{x}\pm \text{SD}$ |
与对照组相比,饲料中添加0.1%、0.2%和0.5%的桑叶水提物对鳜的脏体指数、肝体指数、肠体指数和肥满度都没有显著影响(P>0.05),但随着桑叶水提物添加量增加,鳜脏体指数和肥满度逐渐降低(表3)。
![]() |
表3 桑叶水提物对鳜形体指标的影响 Tab. 3 Effects of MLWE on body profile indexes of Siniperca chuatsi n=3; $\bar{x}\pm \text{SD}$ |
与对照组相比,在饲料中添加0.1%的桑叶水提物能够显著降低鳜血清中总胆固醇(T-CHO)和低密度脂蛋白胆固醇(LDL-C)的含量(P<0.05),但对甘油三酯(TG)和高密度脂蛋白胆固醇(HDL-C)的含量没有显著影响(P>0.05);在饲料中添加0.2%的桑叶水提物能够显著降低鳜血清中的T-CHO、LDL-C和HDL-C的含量(P<0.05),但对TG的含量没有显著影响(P>0.05);在饲料中添加0.5%的桑叶水提物能够显著降低鳜血清中LDL-C和HDL-C的含量(P<0.05),但对TG和T-CHO的含量没有显著影响(P>0.05)(表4)。
![]() |
表4 桑叶水提物对鳜血清脂质代谢指标的影响 Tab. 4 Effects of MLWE on serum lipid metabolism indexes of Siniperca chuatsi n=3; $\bar{x}\pm \text{SD}$ |
与对照组相比,在饲料中添加0.1%和0.2%的桑叶水提物能够显著提高鳜血清超氧化物歧化酶(T-SOD)的活性(P<0.05),但对总抗氧化能力(T-AOC)、还原性谷胱甘肽(GSH)的含量和过氧化氢酶(CAT)的活性没有显著影响(P>0.05);在饲料中添加0.5%的桑叶水提物能够显著提高鳜血清GSH的含量以及CAT和SOD的活性(P<0.05),但对T-AOC的含量没有显著影响(P>0.05)(表5)。
2.5 桑叶水提物对鳜肠道和肝脏组织结构的影响鳜肠道组织结构如图1所示,对照组鳜肠道黏膜组织清晰,结构完整,排列有序,无混乱、脱落现象。添加MLWE后,鳜肠道褶皱增多,绒毛数量增加,但肌层厚度变薄。
进一步统计分析发现,当MLWE添加浓度为0.5%时,绒毛长度显著高于对照组(P<0.05);各MLWE添加组肌层厚度都显著低于对照组(P<0.05);而各组之间绒毛宽度无显著差异(P>0.05)(表6)。
各组鳜肝脏组织切片如图2所示,用基础配合饲料(对照组)饲喂的鳜肝细胞有空泡化现象,肝细胞内有少量脂肪堆积,但肝细胞排列较整齐,细胞核和细胞膜界限清晰。饲料中添加0.1%、0.2%和0.5%的MLWE后都能够改善肝细胞空泡化现象,细胞形态正常,细胞核等结构清晰,无细胞空泡化和细胞核偏移聚集现象。
3 讨论 3.1 饲料中添加桑叶水提物对鳜生长性能的影响桑叶作为饲料原料在畜禽、水产中有较多研究报道[30-31],但桑叶提取物在水产养殖中的应用研究较少,对水产动物生长性能的影响也各不相同。在对凡纳滨对虾的研究中发现,日粮中添加10~300 mg/kg的桑叶黄酮对凡纳滨对虾的生长性能和体成分没有显著影响[26]。同样,在日粮中添加50~1000 mg/kg的桑叶黄酮对吉富罗非鱼的生长性能也没有显著影响[27]。但在大鲵的研究中发现,日粮中添加适量的桑叶提取物可改善大鲵的生长性能,终末体均重、增重率和特定生长率随着桑叶提取物添加浓度的增加而提高,最适添加量为9.0 g/kg[24]。在鲫的研究中也发现,日粮中添加15~60 g/kg的桑叶提取物可显著促进鲫的生长,最适添加量为46.93 g/kg,超过101.06 g/kg后会抑制鲫的生长[32]。本实验结果表明,在日粮中添加0.1%~0.5%的桑叶水提物不影响鳜的生长性能,这与桑叶提取物在凡纳滨对虾和吉富罗非鱼中的研究结论一致。现有的研究表明,较高浓度的桑叶提取物可以促进部分水产动物的生长,但不同水产动物对桑叶提取物的耐受程度可能不同,未来可以提高或者降低桑叶水提物在饲料中的添加比例,探究其是否能提高鳜的生长性能,为桑叶水提物在鳜养殖中的合理应用提供参考依据。目前,桑叶提取物促进水产动物生长的作用机制仍不清楚[33-34],桑叶提取物促生长机制需进一步深入研究。
![]() |
表5 桑叶水提物对鳜血清抗氧化指标的影响 Tab. 5 Effects of MLWE on serum antioxidant indexes of Siniperca chuatsi n=3; $\bar{x}\pm \text{SD}$ |
![]() |
图1 桑叶水提物对鳜肠道组织形态的影响(HE染色)a和e. 0.0% MLWE, b和f. 0.1% MLWE, c和g. 0.2% MLWE, d和h. 0.5% MLWE. Fig. 1 Effects of MLWE on intestinal histomorphology of Siniperca chuatsi (HE staining)a and e. 0.0% MLWE, b and f. 0.1% MLWE, c and g. 0.2% MLWE, d and h. 0.5% MLWE. |
![]() |
表6 桑叶水提物对鳜肠道绒毛长度、绒毛宽度和肌层厚度的影响 Tab 6 Effects of MLWE on intestinal villus length, villus width and muscular thickness of Siniperca chuatsi n=3; $\bar{x}\pm \text{SD}$; μm |
鳜饲料驯化养殖已有30余年,但目前鳜人工养殖仍然以饵料鱼投喂为主。随着鳜摄食机理的解析,初步探索出了鳜苗种饲料驯化技术、配套饲料研发技术与人工饲养技术,已经实现了鳜配合饲料养殖[1-3]。但由于鳜在人工饲料驯化养殖过程中需要维持较高的养殖密度,目前的饲料配方营养还不够均衡等原因,会导致鳜免疫力下降、肝脏受损等问题,影响了鳜的成活率和增重率。本研究中,对照组鳜肝脏细胞有明显的空泡化现象,而通过添加桑叶水提物能够明显改善肝细胞空泡化现象。因此,需要进一步优化饲料配方和探索合适的养殖密度,提高鳜的成活率和生长速率,使配合饲料在鳜养殖中得到推广使用。
![]() |
图2 桑叶水提物对鳜肝脏组织形态的影响(HE染色)a. 0.0% MLWE, b. 0.1% MLWE, c. 0.2% MLWE, d. 0.5% MLWE. Fig. 2 Effects of MLWE on hepatic histology of Siniperca chuatsi (HE staining)a. 0.0% MLWE, b. 0.1% MLWE, c. 0.2% MLWE, d. 0.5% MLWE. |
目前,关于桑叶或桑叶黄酮的降脂功能有一些研究报道[12,35]。在湘西杂交育肥黄牛中研究发现,利用发酵桑叶饲喂的黄牛血清TG含量相对稳定,试验组黄牛血清T-CHO含量均低于对照组[36]。同样,在高脂饲料中添加15%的发酵桑叶能显著降低杂交鳢血清T-CHO和TG的含量[37]。在罗非鱼中发现,发酵桑叶低剂量组和高剂量组罗非鱼血清T-CHO、LDL-C和HDL-C含量都显著低于模型对照组[38]。在饲料中添加发酵桑叶可显著降低大口黑鲈的血脂含量[39]。桑叶提取物也发现具有改善血脂代谢功能。例如,在母鸡饲粮中添加桑叶黄酮可降低血清T-CHO和LDL-C水平,提高HDL-C浓度,但对TG含量没有显著影响[40]。桑叶提取物能显著降低大鲵血浆中T-CHO和TG的含量[24]。在本研究中,饲料中添加0.1%~0.5%的桑叶水提物都能够不同程度改善鳜血清脂质代谢指标,尤其是显著降低LDL-C的含量。推测可能是通过桑叶水提物中的桑叶黄酮发挥降血脂功能,但具体起作用的活性物质和作用机制有待进一步深入探究。
3.3 饲料中添加桑叶水提物对鳜血清抗氧化能力的影响鱼在生长过程中受到刺激会产生氧化应激,使鱼体内的代谢发生紊乱,不仅影响鱼的生长速度,而且会导致鱼的品质下降[41]。为了应对氧化应激,水生动物在进化过程中形成了一套抗氧化系统,包括酶促抗氧化系统和非酶促抗氧化系统。其中,T-AOC、T-SOD和CAT等为主要的酶促抗氧化系统。T-SOD通过催化歧化反应将超氧阴离子转化成H2O2和O2,从而消除活性氧自由基对机体的毒害作用,而CAT通过催化过氧化氢分解来保护细胞免受氧化损伤[42]。GSH作为最重要的非酶促抗氧化物,具有清除自由基、H2O2等功能。一些研究表明,桑叶提取物具有抗氧化作用。例如在小鼠基础饲粮中添加1200 mg/L的桑叶水溶物或粗提物都能够提高小鼠血清GSH-Px和T-SOD的活性,增强抗氧化功能,其中具有抗氧化功能的成分主要是水溶性的,主要成分为黄酮和多糖类化合物[43]。同样,在蛋鸡研究中发现,桑枝叶提取物不同程度提高了蛋鸡血清T-AOC、GSH-Px和T-SOD的活性[44]。在大鲵中研究发现桑叶提取物能够显著提高大鲵肝脏T-AOC和T-SOD的活性[45]。同样,饲粮中添加5 g/kg的白桑叶提取物可提高尼罗罗非鱼血清T-SOD和CAT活性,增强其抗氧化能力[28]。本研究中,在饲料中添加0.1%和0.2%的桑叶水提物能够显著提高鳜血清T-SOD的活性;在饲料中添加0.5%的桑叶水提物能够显著提高鳜血清GSH的含量以及CAT和T-SOD的活性。这些结果与前人的研究结果基本一致,说明桑叶水提物能够不同程度提高鳜抗氧化能力。杨继华等[27]研究表明,桑叶黄酮显著提高了血清SOD、GSH-Px活性和T-AOC以及肝脏CAT和SOD活性。有研究表明,桑树多糖具有良好的抗氧化活性[46],在小鼠实验中发现桑椹多糖能够明显提高肝脏T-SOD、GPx和CAT的酶活性[47]。另有研究表明,尽管较高纯度的桑叶多糖仅具有很低的抗氧化活性,但将桑叶多糖与低浓度槲皮素混合后,能够使类黄酮抗氧化活性显著增强[48]。而桑叶水提物中含有大量的桑叶多糖和桑叶黄酮,因此,推测桑叶水提物可能通过桑叶多糖和桑叶黄酮的协同作用来提高鳜的抗氧化能力。
3.4 饲料中添加桑叶水提物对鳜肠道和肝脏组织形态的影响动物主要通过肠道上皮细胞的肠绒毛来吸收营养物质,皱襞密度、绒毛高度和宽度会直接影响营养物质的吸收效率,肠道绒毛高度越高、数量越多、宽度越宽,肠道的吸收面积就越大[49]。而肠壁肌层厚度也会影响营养物质的吸收利用率[50]。冯麒凤等[51]在大鲵中研究表明,桑叶提取物能够显著增加肠黏膜绒毛数量,提高绒毛高度。王咏梅等[25]在凡纳滨对虾中也发现桑叶黄酮可以改善凡纳滨对虾的肠道结构,提高凡纳滨对虾对营养物质的消化和吸收能力。同样,在本研究中,在饲料中添加MLWE后,鳜肠道褶皱增多,绒毛数量增加,当MLWE添加浓度为0.5%时,绒毛高度显著高于对照组。推测桑叶水提物通过桑叶黄酮来改善鳜肠道健康,促进营养物质吸收。
肝脏是重要的代谢器官,肝脏组织形态能直观反映肝脏健康状况。有研究表明,桑叶提取物能改善动物肝脏健康状况。Huang等[40]在母鸡中研究发现,在日粮中添加低浓度和高浓度桑叶黄酮后肝细胞病理症状均有所缓解,炎症细胞及空泡变少。同样,在高脂高糖饲粮诱导的小鼠中,添加桑叶水提物能够改善肝细胞脂肪变性和堆积的现象[52]。在本研究中也观察到类似的实验结果,使用基础饲料饲喂的鳜肝细胞有空泡化现象,并且肝细胞内有少量脂肪堆积,而添加0.1%、0.2%和0.5%的MLWE后都能够改善肝细胞空泡化现象,同时,细胞形态正常,细胞核等结构清晰,无细胞核偏移聚集现象。推测桑叶水提物通过桑叶黄酮来改善鳜的肝脏健康,具体的作用机制有待进一步研究。
4 结论在鳜配合饲料中添加0.1%~0.5%的桑叶水提物不影响鳜的生长性能,但能够显著改善鳜的血脂指标。此外,添加适量的MLWE能够显著提高鳜血清抗氧化能力,改善鳜的肝脏和肠道健康。根据本研究结果,鳜配合饲料中MLWE的最适宜添加水平为0.5%。
[1] |
Liu L W, Liang X F, Fang J G, et al. The differentia of nitrogen utilization between fast growth individuals and slow growth individuals in hybrid of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish fed minced prey fish[J]. Aquaculture Research, 2017, 48(8): 4590-4595..》Google Scholar
|
[2] |
Liang X F, Oku H, Ogata H Y, et al. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding[J]. Aquaculture Research, 2008, 32: 76-82..》Google Scholar
|
[3] |
Dou Y Q, Liang X F, Gao J J, et al. Single nucleotide polymorphisms in pepsinogen gene, growth hormone gene and their association with food habit domestication traits in Siniperca chuatsi[J]. Journal of Fishery Sciences of China, 2020, 27(5): 485-493. [窦亚琪,梁旭方,高俊杰,等. 鳜pep和gh基因SNP标记与驯食性状的关联分析[J]. 中国水产科学,2020, 27(5): 485-493.].》Google Scholar
|
[4] |
Zhu F. A review on the application of herbal medicines in the disease control of aquatic animals[J]. Aquaculture, 2020, 526: 735422..》Google Scholar
|
[5] |
Huang Z F, Lu J, Ye Y L, et al. Effects of dietary Chinese herbal medicines mixture on growth performance, digestive enzyme activity and serum biochemical parameters of European eel, Anguilla anguilla[J]. Aquaculture Reports, 2020, 18: 100510..》Google Scholar
|
[6] |
Reverter M, Bontemps N, Lecchini D, et al. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives[J]. Aquaculture, 2014, 433: 50-61..》Google Scholar
|
[7] |
Zhang J, Han Q Q, Li C J, et al. Effects of Astragalus polysaccharides on the growth performance, antioxidant parameters, and disease resistance of Qihe crucian carp (Carassius auratus)[J]. Journal of Fishery Sciences of China, 2022, 29(8): 1160-1167. [张杰,韩琪琪,李春静,等. 黄芪多糖对淇河鲫生长性能、抗氧化功能及抗病力的影响[J]. 中国水产科学,2022, 29(8): 1160-1167.].》Google Scholar
|
[8] |
He Q, Jia R, Cao L P, et al. Effect of Ginkgo, Ginkgo biloba, leaf extracts on growth performance, antioxidant function, and immune-related gene expressions of common carp, Cyprinus carpio[J]. Journal of Fishery Sciences of China, 2021, 28(3): 326-336. [何勤,贾睿,曹丽萍,等. 银杏叶提取物对鲤生长性能、抗氧化功能和免疫相关基因表达的影响[J]. 中国水产科学,2021, 28(3): 326-336.].》Google Scholar
|
[9] |
Xiang Z H, He N J, Huang X Z. Mulberry and animal husbandry[J]. Acta Prataculturae Sinica, 2017, 26(2): 1-9. [向仲怀,何宁佳,黄先智. 桑与畜牧业[J]. 草业学报,2017, 26(2): 1-9.].》Google Scholar
|
[10] |
Chan E W C, Lye P Y, Wong S K. Phytochemistry, pharmacology, and clinical trials of Morus alba[J]. Chinese Journal of Natural Medicines, 2016, 14(1): 17-30..》Google Scholar
|
[11] |
Wen P, Hu T G, Linhardt R J, et al. Mulberry: A review of bioactive compounds and advanced processing technology[J]. Trends in Food Science & Technology, 2019, 83: 138-158..》Google Scholar
|
[12] |
Ma G Q, Chai X Y, Hou G G, et al. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review[J]. Food Chemistry, 2022, 372: 131335..》Google Scholar
|
[13] |
Aelenei P, Luca S V, Horhogea C E, et al. Morus alba leaf extract: Metabolite profiling and interactions with antibiotics against Staphylococcus spp. including MRSA[J]. Phytochemistry Letters, 2019, 31: 217-224..》Google Scholar
|
[14] |
Jeszka-Skowron M, Flaczyk E, Podgórski T. In vitro and in vivo analyses of Morus alba Polish var. wielkolistna zolwinska leaf ethanol–water extract—Antioxidant and hypocholesterolemic activities in hyperlipideamic rats[J]. European Journal of Lipid Science and Technology, 2017, 119(10): 1600514..》Google Scholar
|
[15] |
Thabti I, Albert Q, Philippot S, et al. Advances on antiviral activity of Morus spp. plant extracts: Human coronavirus and virus-related respiratory tract infections in the spotlight[J]. Molecules (Basel, Switzerland), 2020, 25(8): 1876..》Google Scholar
|
[16] |
Naowaboot J, Pannangpetch P, Kukongviriyapan V, et al. Antihyperglycemic, antioxidant and antiglycation activities of mulberry leaf extract in streptozotocin-induced chronic diabetic rats[J]. Plant Foods for Human Nutrition, 2009, 64(2): 116-121..》Google Scholar
|
[17] |
Zhao X, Fu Z F, Yao M H, et al. Mulberry (Morus alba L.) leaf polysaccharide ameliorates insulin resistance- and adipose deposition-associated gut microbiota and lipid metabolites in high-fat diet-induced obese mice[J]. Food Science & Nutrition, 2022, 10(2): 617-630..》Google Scholar
|
[18] |
Oh N S, Lee J Y, Lee J M, et al. Mulberry leaf extract fermented with Lactobacillus acidophilus A4 ameliorates 5-fluorouracil-induced intestinal mucositis in rats[J]. Letters in Applied Microbiology, 2017, 64(6): 459-468..》Google Scholar
|
[19] |
Hassan F U, Arshad M A, Li M W, et al. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: Mechanistic insights and prospects[J]. Animals: an Open Access Journal from MDPI, 2020, 10(11): 2076..》Google Scholar
|
[20] |
Kim G N, Jang H D. Flavonol content in the water extract of the mulberry (Morus alba L.) leaf and their antioxidant capacities[J]. Journal of Food Science, 2011, 76(6): C869-C873..》Google Scholar
|
[21] |
Zhou P F, Wang X P, Liu P Z, et al. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction[J]. Industrial Crops and Products, 2018, 120: 147-154..》Google Scholar
|
[22] |
Kwon H J, Chung J Y, Kim J Y, et al. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 3014-3019..》Google Scholar
|
[23] |
Shin S O, Seo H J, Park H, et al. Effects of mulberry leaf extract on blood glucose and serum lipid profiles in patients with type 2 diabetes mellitus: A systematic review[J]. European Journal of Integrative Medicine, 2016, 8(5): 602-608..》Google Scholar
|
[24] |
Li Z F, Chen X C, Chen Y J, et al. Effects of dietary mulberry leaf extract on the growth, gastrointestinal, hepatic functions of Chinese giant salamander (Andrias davidianus)[J]. Aquaculture Research, 2020, 51(6): 2613-2623..》Google Scholar
|
[25] |
Wang Y M, Chen B, Cao J M, et al. Effects of mulberry leaf flavonoids on intestinal mucosal morphology and intestinal flora of litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1817-1825. [王咏梅,陈冰,曹俊明,等. 桑叶黄酮对凡纳滨对虾肠道黏膜形态和肠道菌群的影响[J]. 动物营养学报,2020, 32(4): 1817-1825.].》Google Scholar
|
[26] |
Wang Y M, Chen B, Wang G X, et al. Effects of dietary mulberry leaf flavonoids on growth performance, antioxidant indices, and anti-hypoxic stress ability of Litopenaeus vannamei[J]. Journal of Fishery Sciences of China, 2020, 27(10): 1184-1195. [王咏梅,陈冰,王国霞,等. 饲料中添加桑叶黄酮对凡纳滨对虾生长性能、抗氧化指标及抗胁迫能力的影响[J]. 中国水产科学,2020, 27(10): 1184-1195.].》Google Scholar
|
[27] |
Yang J H, Chen B, Huang Y H, et al. Effects of dietary mulberry leaf flavonoids on growth performance, body composition, antioxidant indices and resistance to nitrite exposure of genetic improvement of farmed Tilapia (Oreochromis niloticus)[J]. Chinese Journal of Animal Nutrition, 2017, 29(9): 3403-3412. [杨继华,陈冰,黄燕华,等. 饲料中添加桑叶黄酮对吉富罗非鱼生长性能、体成分、抗氧化指标及抗亚硝酸盐应激能力的影响[J]. 动物营养学报,2017, 29(9): 3403-3412.].》Google Scholar
|
[28] |
Neamat-Allah A N F, Mahmoud E A, Mahsoub Y. Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus[J]. Fish & Shellfish Immunology, 2021, 108: 147-156..》Google Scholar
|
[29] |
Zhou D L, Liao S T, Huang Y, et al. Effects of dietary mulberry (Morus alba L.) leaf powder on growth performance, meat quality and flavor of grass carp (Ctenopharyngodon idella)[J]. Guangdong Agricultural Sciences, 2021, 48(4): 119-130. [周东来,廖森泰,黄勇,等. 饲料中添加桑叶粉对草鱼生长性能和肉质风味的影响[J]. 广东农业科学,2021, 48(4): 119-130.].》Google Scholar
|
[30] |
Zeng Z, Yu B, Yu J, et al. Nutritional value of mulberry leaf and its application in animal production[J]. Chinese Journal of Animal Nutrition, 2018, 30(2): 468-475. [曾珠,余冰,虞洁,等. 桑叶的营养价值及其在动物生产中的应用[J]. 动物营养学报,2018, 30(2): 468-475.].》Google Scholar
|
[31] |
Jiang X D, Xie Q, Song Z H, et al. Nutritional value of fermented mulberry leaves and its application in animal production[J]. Chinese Journal of Animal Nutrition, 2020, 32(1): 54-61. [蒋小碟,谢谦,宋泽和,等. 发酵桑叶的营养价值及其在动物生产上的应用[J]. 动物营养学报,2020, 32(1): 54-61.].》Google Scholar
|
[32] |
Li H T, Lu L, Wu M, et al. The effects of dietary extract of mulberry leaf on growth performance, hypoxia-reoxygenation stress and biochemical parameters in various organs of fish[J]. Aquaculture Reports, 2020, 18: 100494..》Google Scholar
|
[33] |
Olusola S E, Emikpe B O, Olaifa F E. The potentials of medicinal plant extracts as bio-antimicrobials in aquaculture[J]. International Journal of Medicinal and Aromatic Plants, 2013, 3(3): 404-412..》Google Scholar
|
[34] |
Kuebutornye F K A, Abarike E D. The contribution of medicinal plants to tilapia aquaculture: A review[J]. Aquaculture International, 2020, 28(3): 965-983..》Google Scholar
|
[35] |
Feng G Y, Liu Y Y, Li Y H, et al. Hypoglycemic and hypolipidemic effects and mechanisms of flavonoids from mulberry leaves and its application in animal production[J]. Chinese Journal of Animal Nutrition, 2020, 32(1): 48-53. [冯淦熠,刘莹莹,李颖慧,等. 桑叶黄酮降糖、降脂作用与机制及其在动物生产中的应用[J]. 动物营养学报,2020, 32(1): 48-53.].》Google Scholar
|
[36] |
Luo Y, Li H B, Xiao J Z, et al. Effects of fermented mulberry leaves on serum biochemical, antioxidant and immune indexes of Xiangxi yellow cattle × Limousin hybrid F1 fattening bulls[J]. Chinese Journal of Animal Nutrition, 2020, 32(10): 4914-4921. [罗阳,李昊帮,肖建中,等. 发酵桑叶对湘西黄牛×利木赞杂交F1代育肥牛血清生化、抗氧化及免疫指标的影响[J]. 动物营养学报,2020, 32(10): 4914-4921.].》Google Scholar
|
[37] |
Gao S N, Ma H J, Xu T, et al. Effects of high-fat diet supplemented with fermented mulberry leaves on growth performance, body composition and serum biochemical indexes of hybrid snakehead[J]. Chinese Journal of Animal Nutrition, 2017, 29(9): 3422-3428. [高胜男,马卉佳,徐韬,等. 高脂饲料中添加发酵桑叶对杂交鳢生长性能、体组成及血清生化指标的影响[J]. 动物营养学报,2017, 29(9): 3422-3428.].》Google Scholar
|
[38] |
Shen H M, Peng X H, Lin S M, et al. Regulation of fermented mulberry leaves on serum lipid and blood glucose levels of hyperlipidemia Tilapia (Oreochromis niloticus)[J]. Chinese Journal of Animal Nutrition, 2016, 28(4): 1250-1256. [沈黄冕,彭祥和,林仕梅,等. 发酵桑叶对高脂血症罗非鱼血脂、血糖水平的调节作用[J]. 动物营养学报,2016, 28(4): 1250-1256.].》Google Scholar
|
[39] |
Xu T, Peng X H, Chen Y J, et al. Effects of replacing fish meal with fermented mulberry leaves on the growth, lipid metabolism and antioxidant capacity in largemouth bass (Micropterus salmoides)[J]. Journal of Fisheries of China, 2016, 40(9): 1408-1415. [徐韬,彭祥和,陈拥军,等. 发酵桑叶替代鱼粉对大口黑鲈生长、脂质代谢与抗氧化能力的影响[J]. 水产学报,2016, 40(9): 1408-1415.].》Google Scholar
|
[40] |
Huang Z W, Lv Z P, Dai H J, et al. Dietary mulberry-leaf flavonoids supplementation improves liver lipid metabolism and ovarian function of aged breeder hens[J]. Journal of Animal Physiology and Animal Nutrition, 2022, 106(6): 1321-1332..》Google Scholar
|
[41] |
Zhao D X, Cheng C, Xiao M, et al. Effects of stocking density on growth, antioxidant enzyme activity and related gene expression of juvenile Siberian hybrid sturgeon[Acipenser baerii(♀) × A. schrenckii(♂)[J]. Journal of Fisheries of China, 2022, 46(9): 1582-1592. [赵大显,程超,肖敏,等. 养殖密度对西伯利亚杂交鲟幼鱼生长、抗氧化酶活性和相关基因表达的影响[J]. 水产学报,2022, 46(9): 1582-1592.].》Google Scholar
|
[42] |
Fan Y W, Zhang M Z, Li M, et al. Effects of dietary Haematococcus pluvialis on growth, antioxidant enzyme activity, immune response and ammonia tolerance in yellow catfish Pelteobagrus fulvidraco[J]. Journal of Fisheries of China, 2022, 46(11): 2168-2176. [樊玉文,张木子,黎明,等. 饲料中添加雨生红球藻对黄颡鱼生长、抗氧化酶活性、免疫应答及氨氮耐受的影响[J]. 水产学报,2022, 46(11): 2168-2176.].》Google Scholar
|
[43] |
Huang H, Xia X, Zhou Y J, et al. Effects of mulberry leaf extracts with different extraction methods on growth performance, antioxidant and immune function in mice[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2702-2711. [黄慧,夏鑫,周应军,等. 不同提取方法的桑叶提取物对小鼠生长性能、抗氧化和免疫功能的作用研究[J]. 动物营养学报,2022, 34(4): 2702-2711.].》Google Scholar
|
[44] |
Lei C L, Li J, Wu Y S, et al. Effects of mulberry branch and leaf extract on growth performance, serum immune indexes and antioxidant capacity of laying hens[J]. Chinese Journal of Animal Science, 2019, 55(8): 118-122. [雷春龙,李娟,吴永胜,等. 桑枝叶提取物对蛋鸡生产性能、血清免疫指标与抗氧化能力的影响[J]. 中国畜牧杂志,2019, 55(8): 118-122.].》Google Scholar
|
[45] |
Lu H, Li Z F, Huang X Z, et al. Effects of mulberry leaf extract and 1-deoxynojirimycin on growth performance, liver function and immune ability of giant salamander (Andrias davidianus)[J]. Chinese Journal of Animal Nutrition, 2021, 33(1): 584-593. [卢桦,李战福,黄先智,等. 桑叶提取物和1-脱氧野尻霉素对大鲵生长性能、肝脏功能及免疫能力的影响[J]. 动物营养学报,2021, 33(1): 584-593.].》Google Scholar
|
[46] |
Ai J, Bao B, Battino M, et al. Recent advances on bioactive polysaccharides from mulberry[J]. Food & Function, 2021, 12(12): 5219-5235..》Google Scholar
|
[47] |
Chen C, Huang Q, Li C, et al. Hypoglycemic effects of a Fructus Mori polysaccharide in vitro and in vivo[J]. Food & Function, 2017, 8(7): 2523-2535..》Google Scholar
|
[48] |
Zhang D Y, Wan Y, Xu J Y, et al. Ultrasound extraction of polysaccharides from mulberry leaves and their effect on enhancing antioxidant activity[J]. Carbohydrate Polymers, 2016, 137: 473-479..》Google Scholar
|
[49] |
Caspary W F. Physiology and pathophysiology of intestinal absorption[J]. The American Journal of Clinical Nutrition, 1992, 55(1 Suppl): 299S-308S..》Google Scholar
|
[50] |
Yang L X, Xu H Z, Liu C J, et al. Effect of vitamin C on the structure and function of the digestive system of Andrias davidianus[J]. Journal of Fisheries of China, 2022: 1-11. [杨理想,徐杭忠,刘长江,等. 维生素C对大鲵消化系统结构和功能的影响[J]. 水产学报,2022: 1-11.].》Google Scholar
|
[51] |
Feng Q F, Li Z F, Huang X Z, et al. Effects of dietary mulberry leaf extract and 1-deoxynojirimycin on growth, digestion and immunity capacity, and intestinal microorganism of Chinese giant salamander (Andrias davidianus)[J]. Acta Hydrobiologica Sinica, 2021, 45(3): 582-592. [冯麒凤,李战福,黄先智,等. 日粮中添加桑叶提取物和1-脱氧野尻霉素对大鲵生长、消化、免疫能力和肠道菌群的影响[J]. 水生生物学报,2021, 45(3): 582-592.].》Google Scholar
|
[52] |
Du Y, Li D X, Lu D Y, et al. Morus alba L. water extract changes gut microbiota and fecal metabolome in mice induced by high-fat and high-sucrose diet plus low-dose streptozotocin[J]. Phytotherapy Research, 2022, 36(3): 1241-1257..》Google Scholar
|