2. 中国水产科学研究院珠江水产研究所,农业农村部热带亚热带水产资源利用与养殖重点实验室,广东 广州 510380
3. 上海海洋大学水产与生命学院,上海 201306
2. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China
3. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
大口黑鲈(Micropterus salmoides)俗称加州鲈,鲈形目(Perciformes),鲈亚目(Percoidei),太阳鱼科(Centrarchidae),黑鲈属,原产于北美洲,自1983年引入大陆[1],因其抗病性强、耐低氧、易捕捞、生长速度快等特点深受养殖者青睐[2]。在养殖鱼类中,雌雄个体间生长速度、个体大小差异明显的现象相当普遍[3],如半滑舌鳎(Cynoglossus semilaevis)[4]、翘嘴鲌(Culter alburnus)[5]和牙鲆(Paralichthys olivaceus)[6]等雌性生长快于雄性;而黄颡鱼(Pelteobagrus fulvidraco)[7]、乌鳢(Channa argus)[8]和尼罗罗非鱼(Oreochomis niloticus)[9]等雄性生长快于雌性。在养殖过程中发现270日龄(days post hatching, dph)后的大口黑鲈雄性生长快于雌性[10],此外,雌性性腺开始发育时间较雄性早,性腺指数最高可达12%[11],翌年养殖模式中,越冬的雌性大口黑鲈将大部分能量用于卵巢发育,不仅增加了养殖成本而且影响了鱼肉的品质,生产全雄大口黑鲈苗种可避免此类养殖问题,有助于减少养殖成本和提高养殖效益[12]。
大口黑鲈的性别决定类型属于XX/XY型[13],制备全雄苗种的关键技术之一是诱导遗传雄鱼(XY-M)性反转为具有繁殖功能的伪雌鱼(XY-F)。目前,常用的方法是通过外源雌激素诱导伪雌鱼,17β-雌二醇(17β-estradiol, 17β-E2)具有良好的诱导效果常被用于生产伪雌鱼[14]。对3 dph的斑点叉尾鮰(Ictalurus punctatus)持续投喂含17β-E2 (60 μg/g)的饲料27 d,性转率为100%,且伪雌鱼卵巢发育良好[15];鲑科鱼类易被雌性化诱导[16],通过喂食20 mg/kg 17β-E2 30 d,可在大西洋鲑(Salmo salar)和虹鳟(Oncorhynchus mykiss)中产生100%的雌鱼[17]; Voorhees等[18]使用相同的浓度投喂褐红鳟(Salmo trutta)得到了86%的雌性比例。在得到可繁殖的伪雌鱼后,将其与正常雄鱼杂交可获得超雄鱼,再将超雄鱼和正常雌鱼杂交可得到全雄苗种,这在青鳉(Oryzias latipes)[19]和尼罗罗非鱼[20]已经实现。
在性腺向精巢分化过程中,内源雄激素对精巢发育和精子发生起着关键作用[21]。通过抑制3β-羟基类固醇脱氢酶(3β-hydroxysteroid dehydrogenase, 3β-HSD,雄激素合成酶)的活性,如曲洛斯坦(trilostane, TR),可降低雄激素合成酶相关基因的表达水平和血液中11-酮基睾酮(11-ketotestosterone, 11-KT)的含量[22-23]。在鱼类性腺未分化时期,将17β-E2和TR同时添加至饲料中可成功获得伪雌鱼。在尼罗罗非鱼中,提高雌激素水平并阻断雄激素合成可诱导精巢转分化为卵巢[24]。
本实验室前期利用100和200 mg/kg 17β-E2获得了大口黑鲈伪雌鱼[25],但多数出现繁殖功能障碍,降低了伪雌鱼的生殖效率和育种价值。为解决这一问题,本研究通过投喂更低浓度17β-E2和TR的饲料诱导大口黑鲈雌性化,评价不同处理对生长性能和性别比例的影响,观察性腺组织结构的变化,分析类固醇类激素水平和性腺发育相关基因dmrt1 (doublesex and mab-3-related transcription factor)和cyp19a1a (cytochrome P450 family 19 subfamily A, polypeptide 1a)的表达变化,以期构建效果更佳的大口黑鲈雌性化诱导方案,为单性大口黑鲈遗传育种研究提供理论基础和数据支撑。
1 材料与方法 1.1 实验饲料及饲养管理实验用大口黑鲈来自广东梁氏水产种业有限公司,采用循环水养殖系统饲养大口黑鲈,圆形养殖池直径为1 m,水深1 m,每个养殖池中放入1000尾15 dph体长为(10.0±0.1) mm大口黑鲈幼鱼。实验使用试剂17β-E2 (MCE#HY-B0141)和TR (MCE#HY-14281)购自广州威佳生物科技有限公司。采集样品前将实验鱼暂养于120 L的塑料桶中。设置实验组和对照组,实验组饲料中分别添加30 mg/kg 17β-E2、30 mg/kg TR、20 mg/kg 17β-E2+10 mg/kg TR,并命名为E30、TR30和E20TR10,对照组饲料不添加17β-E2或TR,命名为C,每组设置3个平行共12个养殖池。参考El-Greisy等[26]报道的喷雾法配制实验组饲料和对照组饲料,在阴凉避光处风干并保存。投喂含激素饲料的时长为60 d,分别在每日8:00、12:00和17:00饱食投喂3次,餐后及时清理残饵并吸污,定期换水。此后所有实验鱼均转移到水泥池(7 m× 3 m×1.2 m),改投喂专用鲈饲料至12月龄。
1.2 采样及分析投喂激素第30天和60天时,从各组中均随机采集30尾大口黑鲈,测量每个个体的体长(L)和体重(W)指标,并计算体长和体重特定生长率。投喂激素第60天时,从各组中均随机采集30尾大口黑鲈,采集每条实验鱼的尾鳍和性腺,尾鳍放入无水乙醇中保存,用于性别鉴定[13],取性腺组织放入4%的多聚甲醛中(武汉塞维尔生物科技有限公司),用于制作HE切片。60 d后实验组停止激素投喂,改投喂专用鲈饲料。在12月龄时,每组随机捕捞30尾鱼,全部剪取尾鳍,抽取血液和解剖出性腺,尾鳍用于性别鉴定,血液在4 ℃环境下,3000 r/min离心15 min,吸取血清并将保存于–80 ℃冰箱,用于检测血清中雌二醇(estradilol, E2)和睾酮(testosterone, T)含量,解剖出的性腺一部分保存于–80 ℃冰箱,用于检测dmrt1和cyp19a1a表达量,另一部分同样保存4%的多聚甲醛中,用于制作HE切片。
体长和体重的特定生长率计算公式如下:
体长特定生长率(specific growth rate of length): SGRL=100%×(lnL2–lnL1)/t
体重特定生长率(specific growth rate of weight): SGRW=100%×(lnW2–lnW1)/t
L 1为初始体长(cm); L2为终末体长(cm); W1为初始体重(g); W2为终末体重(g); t为30 d。
1.3 HE组织切片使用梯度酒精将保存于4%多聚甲醛中的性腺组织逐级脱水,经苯甲醇透明后将组织放置于包埋机内进行包埋,再经过切片、HE染色后使用ZEISS显微镜(Axio Scope.A1)观察并拍照。
1.4 血清E2和T含量测定采用本实验室开发的大口黑鲈性别连锁标记鉴定出实验组遗传雄鱼及对照组雌鱼和雄鱼。使用鱼雌二醇(E2)及睾酮(T)ELISA试剂盒(上海优选生物科技有限公司)测定E2及T含量。在酶标仪(Biotek Cytation5,USA) 450 nm波长下测定其吸光值(OD),通过标准曲线计算各样品中的类固醇激素含量。
1.5 RNA样品提取及基因表达采用Tissue RNA Kit (OMEGA)试剂盒(广州威佳生物科技有限公司)提取性腺总RNA,溶于DEPC水中,用1%琼脂糖凝胶和CytationTM ENO HTS多功能酶标仪(Biotek Cytation5, USA)检测总RNA纯度和浓度。取1 μg 12月龄伪雌大口黑鲈和对照组雌雄性腺总RNA,参照TaKaRa反转录试剂盒合成cDNA作为模板,使用赛默飞荧光定量仪(QuantStudio 6)进行qRT-PCR检测。qRT-PCR反应体系为:cDNA模板2 μL,上下游引物各0.5 μL (10 μmol/L), Premix 10 μL, DEPC水7 μL,共20 μL;反应程序为:50 ℃ 2 min, 95 ℃ 10 min, (95 ℃ 15 s, 60 ℃ 30 s, 72 ℃ 30 s, 40个循环), 95 ℃ 15 s, 60 ℃ 1 min, 95 ℃ 15 s。以β-actin作为参照,检测dmrt1和cyp19a1a基因的相对表达量[27],引物(表1)委托广州艾基生物技术有限公司合成。
![]() |
表1 荧光定量引物序列 Tab. 1 Nucleotide sequences of qRT-PCR primers |
激素含量数据以Excel 2016软件进行整理,基因相对表达量依据2−ΔΔCt法计算,数据分析运用SPSS 20软件进行单因素方差分析(One-way ANOVA)和多重比较(Duncan)分析差异显著性。
2 结果与分析 2.1 17β-E2和TR投喂对大口黑鲈生长的影响投喂含17β-E2和TR的饲料30 d和60 d后,在这两个时期内,E30和E20TR10组的体长和体重显著低于C组(P<0.05)(图1), TR30组的体长和体重高于对照组但无显著差异(P>0.05)(图1)。实验处理结束后各组体长和体重特定生长率统计结果显示(表2), 0~30 d时,E30和E20TR10组体长和体重特定生长率低于C组,TR30组体长和体重特定生长率高于C组,30~60 d时,E30组体长特定生长率低于C组而体重特定生长率高于C组,TR30组和E20TR110组体长和体重特定生长率均低于C组。
![]() |
图1 17β-雌二醇(17β-E2)和曲洛斯坦(TR)对大口黑鲈体长(a)和体重(b)的影响每个时期不同字母表示差异显著(P<0.05),相同字母表示差异不显著(P>0.05). C为不添加17β-E2或TR的对照组,E30、TR30和E20TR10分别为添加30 mg/kg 17β-E2、30 mg/kg TR、20 mg/kg 17β-E2+10 mg/kg TR的实验组. Fig. 1 Effects of 17β-estradiol (17β-E2) and trilostane (TR) on body length (a) and weight (b) of Micropterus salmoidesDifferent letters in the same period show significant difference between the treatments (P<0.05), the same letters indicates that the difference is not significant (P>0.05). C represents control group without 17β-E2 or TR suplimentation, E30, TR30 and E20TR10 represent experimental groups with 30 mg/kg 17β-E2, 30 mg/kg TR and 20 mg/kg 17β-E2+10 mg/kg TR suplimentation, respectively. |
![]() |
表2 大口黑鲈体长和体重特定生长率统计 Tab. 2 Statistics of specific growth rate of body length and weight of Micropterus salmoides n=30; $\bar{x}\pm \text{SD}$ |
通过性别连锁分子标记鉴定所有实验鱼遗传性别,再结合组织切片鉴定伪雌鱼。饲喂激素60 d后E30、TR30、E20TR10和C组的雌性比例分别为100%、0%、100%和53.33% (表3)。组织切片显示(图2), C组(图2a)有大量椭圆型初级卵母细胞,细胞中有3~4个细胞核。E30和E20TR10组(图2b和2d)遗传雄鱼的性腺均出现一个大的卵巢腔,以及大量早期卵母细胞。TR30组(图2c)性腺以间质组织为主,未见卵母细胞。
![]() |
表3 17β-E2和TR对75日龄和12月龄大口黑鲈性别比例的影响 Tab. 3 Sex ratio of 75-day-old and 12-month-old Micropterus salmoides treated with 17β-E2 and TR |
![]() |
图2 17β-E2和TR对75日龄大口黑鲈性腺结构的影响a. C组雌鱼;b. E30组生理雌鱼;c. TR30组遗传雄鱼;d. E20TR10组生理雌鱼. OC:卵巢腔;OG:卵原细胞OO:卵母细胞;POC:初级卵母细胞;SPG:精原细胞;SPC:精母细胞. Fig. 2 Effects of different concentrations of 17β-E2 and TR on gonad structure of 75-day-old Micropterus salmoidesa. Fmale in C group; b. Physiological female in E30 group; c. Genetic male in TR30 group; d. Physiological female in E20TR10 group. OC: ovarian cavity; OG: oogonium; OO: oocytes; POC: primary oocytes; SPG: spermatogonia; SPC: spermatocytes. |
12月龄时,E30、TR30、E20TR10和C组的雌性比例分别为100%、0%、100%和46.67% (表3)。解剖发现,C组雌鱼卵巢处于V期(图3a), E30和E20TR10组的伪雌鱼的卵巢处于II期(图3b、图3f), TR30组没有伪雌鱼,性腺为精巢(图3e)。组织切片结果显示(图3), C组雌鱼(图3c)卵巢中充满成熟的卵细胞和少量初级卵母细胞,E30和E20TR10组伪雌鱼的卵母细胞处于II-III期(图3d、图3h), TR30组为IV期精巢(图3g)。
![]() |
图3 17β-E2和TR对12月龄大口黑鲈性腺结构的影响a和c:C. 组雌鱼;b和d. E30组伪雌鱼;e和g. TR30组遗传雄鱼;f和h. E20TR10组伪雌鱼. POC:初级卵母细胞;SOC:次级卵母细胞;MOC:成熟期卵母细胞;OC:卵巢腔;YG:卵黄颗粒;Sg:精原细胞;SP:精子;ST精细胞. Fig. 3 Eftects of different concentrations of 17β-E2 and TR on gonadal structure of 12-month-old Micropterus salmoidesa and c. Fmale in C group; b and d. Pseudofemale in E30 group; e and g. Genetic male in TR30 group; f and h. Pseudofemale in E20TR10 group; POC: primary oocyte; SOC: secondary oocytes; MOC: mature oocytes; OC: ovarian cavity; YG: yolk granules; Sg: spermatogonia; SP: sperms; ST: spermatid. |
各实验组12月龄大口黑鲈伪雌鱼和对照组雌雄鱼血清中E2和T含量结果显示(图4),各实验组E2含量显著低于对照组雌鱼(C-F)(P<0.05) (图4a); E30和E20TR10组E2含量显著高于对照组雄鱼(C-M)(P<0.05), TR30组低于C-M组,但无显著差异(P>0.05)(图4a);各实验组的T含量显著高于C-F组(P<0.05)(图4b), E30和E20TR10组T含量显著低于C-M组(P<0.05), TR30组T含量低于C-M组,但无显著差异(P>0.05)(图4b)。
![]() |
图4 12月龄伪雌大口黑鲈雌二醇(a)和睾酮(b)的浓度C-M:对照组雄鱼;C-F:对照组雌鱼;E30:E30组伪雌鱼;TR30:TR30组伪雌鱼;E20TR10:E20TR10组伪雌鱼.不同字母表示差异显著(P<0.05),相同字母表示差异不显著(P>0.05). Fig. 4 Concentrations of estradiol (a) and testosterone (b) in 12-month-old pseudofemale Micropterus salmoidesC-M: male in control group; C-F: female in control group; E30: pseudofemale in E30 group; TR30: pseudofemale in TR30 group; E20TR10: pseudofemale in E20TR10 group; Different letters between the treatments in the same period show significant difference (P<0.05), the same letter indicates that the difference is not significant (P>0.05). |
12月龄实验组伪雌鱼和对照组雌雄鱼性腺组织cyp19a1a和dmrt1的mRNA表达量结果显示,cyp19a1a在各实验组中的表达量均显著低于C-F组(P<0.05)(图5a), E30和E20TR10组的表达量显著高于C-M组(P<0.05), TR30组低于C-M组,但无显著差异(P>0.05)(图5a);各实验组中dmrt1的表达量显著高于C-F组(P<0.05)(图5b), E30和E20TR10组dmrt1表达量显著低于C-M组(P<0.05), TR30组低于C-M组,但无显著差异(P>0.05)(图5b)。
![]() |
图5 12月龄伪雌大口黑鲈cyp19a1a (a)和dmrt1 (b)的表达C-M:对照组雄鱼;C-F:对照组雌鱼;E30:E30组伪雌鱼;TR30:TR30组伪雌鱼;E20TR10:E20TR10组伪雌鱼. 不同字母表示差异显著(P<0.05),相同字母表示差异不显著(P>0.05). Fig. 5 Expression of cyp19a1a (a) and dmrt1 (b) in 12-month-old pseudofemale Micropterus salmoidesC-M: male in control group; C-F: female in control group; E30: pseudofemale in E30 group; TR30: pseudofemale in TR30 group; E20TR10: pseudofemale in E20TR10 group. Different letters between the treatments in the same period indicate significant difference (P<0.05), the same letter indicates that the difference is not significant (P>0.05). |
雌激素作为一种性类固醇类激素,在鱼类中除了参与性别决定与性别分化外[28],还可间接调控鱼类的生长[29],通过影响鱼类的摄食和消化系统,进而影响其生长速度[30]。在一定浓度范围内饲喂外源雌激素,如17β-E2,可以促进鱼类生长或者不影响生长,但超过这一范围后,鱼类的生长会受到抑制[31]。在短吻鲟(Acipenser brevirostrum)中,饲喂添加17β-E2 (10、25、50和100 mg/kg)的饲料60 d后发现,随着17β-E2浓度的增加,短吻鲟的进食量逐渐减少,其中10和25 mg/kg的处理对生长无显著影响,而50和100 mg/kg的处理显著抑制了生长[32]。在日粮中添加150 mg/kg的17β-E2,投喂30 dph绿太阳鱼(Lepomis cyanellus)[33]和蓝鳃太阳鱼(Lepomis macrochirus)[14]发现,17β-E2促进了绿太阳鱼的生长,而抑制了蓝腮太阳鱼的生长。研究表明,通过腹腔注射17β-E2, 24 h后罗非鱼的摄食机能将显著下降[34],在本研究中,E30和E20TR10实验组的大口黑鲈生长缓慢,推测是因为激素的添加影响了大口黑鲈消化系统的功能,减少了摄食量,最终导致生长缓慢。
雌激素对鱼类生长的影响较为明显,与其功能相似的TR对鱼类生长也有类似作用。Villeneuve等[35]对胖头鱼(Pimephales promelas)施用80、400和2000 μg/L的TR后,促进了其生长;Sun等[22]使用100、300和1000 μg/L的TR浸泡丰年虫后,投喂出膜4 dph的青鱂至28 dph,其生长并未受到显著影响;本研究中30 mg/kg TR处理对大口黑鲈的生长也无影响。这表明在不同鱼类中影响其生长的TR浓度具有较大差异。
3.2 17β-E2和TR对大口黑鲈性别比例和性腺发育的影响鱼类进化程度相对较低,性别可塑性较强,在性别未分化前,性类固醇类激素对性腺分化方向有着决定性作用[36],若体内雌激素占比较高,性腺则发育为卵巢,反之发育为精巢[37]。在饲料中添加50和100 mg/kg的17β-E2后,投喂性腺未分化的巴西黄金鲈(Centropomus undecimalis) 45 d可得到68.42%和90%的雌性比例。在大口黑鲈出膜35~40 d时,Al-Ablani等[38]用浓度为100、200和400 mg/kg 17β-E2饲料喂食大口黑鲈可使其100%雌性化;而Garrett[39]使用低浓度的17β-E2 (50 mg/kg)处理同样获得了100%的雌性率。在本研究中,投喂激素的起始时间提早为15 dph,使用30 mg/kg的17β-E2同样获得了100%的雌性率,表明在性逆转实验的起始时间越接近性腺分化时间性转效果越好。
TR在阻断雄激素合成通路中起着重要作用,虽然TR可显著降低雄激素合成的关键基因(cytochrome P450, family 11, subfamily B, polypeptide 2, cyp11b2)的表达水平及血清中睾酮的含量,但雌激素合成关键基因(cyp19a1a)的表达及血清中雌二醇的水平与正常雌鱼无显著差异,在尼罗罗非鱼中,只施加TR (150 mg/kg)的实验组无性逆转效果[24]。在本研究中30 mg/kg TR处理组也未发生性逆转,表明单独下调内源雄激素水平不能成功诱导雄性逆转。尽管只降低雄激素水平无法实现性逆转,但通过阻碍雄激素合成,上调雌性相关基因的表达及提高内源雌激素含量,可促使性腺向卵巢分化[40-41]。在牙鲆中,饲喂17β-E2和TR (5和120 mg/kg) 60 d后dmrt1下调,cyp19a上调,性腺有向卵巢分化的趋势[42]。Shi等[24]将相同剂量(150 mg/kg)的17β-E2和TR同时加入饲料中,投喂30 dph的尼罗罗非鱼60 d后雌性比例增加到88.30%。本研究中,同时投喂17β-E2和TR (20和10 mg/kg)后得到100%的雌性大口黑鲈,这与在性腺分化的关键时期,雌激素对性腺分化方向起决定性作用的结论一致[43]。
3.3 12月龄伪雌大口黑鲈性腺发育获得全雄苗种的第一步是获得可繁殖的伪雌鱼,因此检查每个实验组12月龄的伪雌鱼卵巢发育情况,发现E30和E20TR10组的伪雌鱼出现卵巢发育滞后的现象。采用含50 mg/kg 17β-E2的微颗粒饲料诱导1 dph的黄颡鱼30 d可有效获得发育良好的伪雌黄颡鱼[7]。然而Hu等[44]使用17β-E2处理15 dph的红鳍东方鲀发现伪雌鱼卵巢发育缓慢甚至退化;本研究的处理时间为同样为15 dph,伪雌鱼卵巢同样发育迟滞,推测与投喂激素的起始时间较晚相关,这需进一步的实验研究证实。
研究表明,适宜浓度的外源雌激素可促进鱼类卵巢分化,如日粮中添加20 mg/kg 的17β-E2可促使黄颡鱼卵巢分化提前7 d[45];浸泡在30 μg/L的17β-E2可促使半滑舌鳎卵巢分化提前约5 d[46];投喂200 mg/kg17β-E2可使胡子鲇(Clarias fuscus)初级卵母细胞的出现提前了1~3 d[47]。但过高浓度的雌激素会抑制卵原细胞减数分裂的启动和卵黄在卵母细胞中的积累[48],导致伪雌鱼卵巢发育迟缓。在本研究中伪雌鱼仍出现卵巢发育迟缓的现象,表明诱导伪雌大口黑鲈的雌激素添加量仍需进一步探寻。
3.4 12月龄伪雌大口黑鲈性类固醇类激素及性别相关基因表达性腺的分化发育和形态维持与性类固醇类激素密不可分,在卵细胞发育过程中性类固醇类激素尤其是E2,其含量的变化影响着卵母细胞的增殖和成熟[49],主要的生理作用是调控卵母细胞的生长和卵黄的积累[50]。此外,E2的合成受到雌性标志基因cyp19a1a的调控[51],该基因的表达量在不同发育阶段存在差异,繁殖期时其表达量达到峰值[52],若卵巢内E2合成不足则引起卵原细胞增殖和成熟异常[53]。而在精巢发育成熟过程中,血清中T的含量和dmrt1的表达量与之密切相关[54]。本研究中,伪雌鱼血清中E2含量及其卵巢内cyp19a1a的表达量显著低于正常雌鱼,而T含量和dmrt1的表达量与雄鱼相似。这与本研究诱导雌性率和组织切片结果一致,伪雌鱼性类固醇激素含量和性腺发育相关基因表达量均未达到正常雌鱼水平,这可能是大口黑鲈伪雌鱼卵巢成熟受阻的原因之一,在后续的生产工作中可在繁殖季节尝试通过补充外源雌激素,进一步提高雌性激素水平和促进卵巢发育。
4 结论30 mg/kg TR不能诱导大口黑鲈性别逆转,而30 mg/kg 17β-E2和20 mg/kg 17β-E2+10 mg/kg TR处理可获得伪雌大口黑鲈,且未再次转变为雄性,但其卵巢发育迟滞,血清中E2含量及卵巢中cyp19a1a表达量均未到达正常雌鱼水平。
[1] |
Lou Y D. Present situation and countermeasure of the study on fish introduction in China[J]. Journal of Fisheries of China, 2000, 24(2): 185-192. [楼允东. 我国鱼类引种研究的现状与对策[J]. 水产学报,2000, 24(2): 185-192.].》Google Scholar
|
[2] |
Bai J J, Li S J. Development of largemouth bass (Micropterus salmoides) culture[M]// Aquaculture in China: Success Stories and Modern Trends. Hoboken: John Wiley & Sons, Ltd., 2018..》Google Scholar
|
[3] |
Wu Q J, Chen R D, Ye Y Z, et al. Investigation on the carp gynogenesis with reference to establishing a pure line[J]. Acta Genetica Sinica, 1981, 8(1): 50-55, 98. [吴清江,陈荣德,叶玉珍,等. 鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J]. 遗传学报,1981, 8(1): 50-55, 98.].》Google Scholar
|
[4] |
Sun Y Y, Yu H Y, Zhang Q Q, et al. Molecular characterization and expression pattern of two zona pellucida genes in half-smooth tongue sole (Cynoglossus semilaevis)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010, 155(3): 316-321..》Google Scholar
|
[5] |
Liu Y L, Jia Y Y, Jiang W P, et al. Study on morphological characteristics and embryonic development of the gynogenesis top mouth culter (Culter alburnus)[J]. Journal of Shanghai Ocean University, 2017, 26(2): 203-211. [刘月亮,贾永义,蒋文枰,等. 雌核发育翘嘴鲌胚胎发育和形态特征的研究[J]. 上海海洋大学学报,2017, 26(2): 203-211.].》Google Scholar
|
[6] |
Liu H J, Hou J L, Liu Y. Gynogenesis in Japanese flounder: A review[J]. Journal of Fishery Sciences of China, 2017, 24(4): 902-912. [刘海金,侯吉伦,刘奕. 牙鲆雌核发育研究进展[J]. 中国水产科学,2017, 24(4): 902-912.].》Google Scholar
|
[7] |
Wang C L, Guan W Z, Li Y Q, et al. Study on 17β-estradiol induced feminization of Pelteobagrus fulvidraco[J]. South China Fisheries Science, 2020, 16(3): 25-30. [王成龙,关文志,李永强,等. 17 β -雌二醇诱导黄颡鱼雌性化的研究[J]. 南方水产科学,2020, 16(3): 25-30.].》Google Scholar
|
[8] |
Wang L, Xie N, Shen Y B, et al. Constructing high-density genetic maps and developing sexing markers in northern snakehead (Channa argus)[J]. Marine Biotechnology, 2019, 21(3): 348-358..》Google Scholar
|
[9] |
Wang W W. Study on the sexual dimorphism in Nile tilapia (Oreochomis niloticus)[D]. Jinzhong: Shanxi Agricultural University, 2016. [王伟伟. 基于高通量测序的尼罗罗非鱼(Oreochomis Niloticus)性别二态性研究[D]. 晋中:山西农业大学,2016.].》Google Scholar
|
[10] |
Wei Y F. Sexual morphology, growth differences and development of gender molecular markers in Micropterus salmoides[D]. Wuhan: Huazhong Agricultural University, 2022. [魏怡飞. 大口黑鲈两性形态、生长差异与性别分子标记开发[D]. 武汉:华中农业大学,2022.].》Google Scholar
|
[11] |
Yang G, Li S J, Lian Z Q, et al. Effects of temperature regulation on gonad development of Micropterus salmoides [J]. Freshwater Fisheries, 2023, 53(4): 26-33. [杨刚,李胜杰,连总强,等. 温度调控对大口黑鲈性腺发育的影响[J]. 淡水渔业,2023, 53(4): 26-33.].》Google Scholar
|
[12] |
Lu B Y, Liang G Y, Xu M M, et al. Production of all male amelanotic red tilapia by combining MAS-GMT and tyrb mutation[J]. Aquaculture, 2022, 546(1): 737327..》Google Scholar
|
[13] |
Du J X, Zhou J H, Li S J, et al. A PCR-based method for genetic sex identification and evidence of the xx/xy sex determination system in largemouth bass (Micropterus salmoides L.)[J]. Aquaculture, 2021, 545(12): 737220..》Google Scholar
|
[14] |
Wang H P, Gao Z X, Beres B, et al. Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish Lepomis macrochirus[J]. Aquaculture, 2008, 285(1-4): 216-223..》Google Scholar
|
[15] |
Xu S Q, Zhang S Y, Duan Y Q, et al. Feminization of channel catfish induced by 17β-estradiol[J]. Acta Hydrobiologica Sinica, 2022, 46(11): 1668-1674. [徐思琪,张世勇,段永强,等. 17β-雌二醇诱导斑点叉尾鮰雌性化研究[J]. 水生生物学报,2022, 46(11): 1668-1674.].》Google Scholar
|
[16] |
Piferrer F. Endocrine sex control strategies for the feminization of teleost fish[J]. Aquaculture, 2001, 197(1-4): 229-281..》Google Scholar
|
[17] |
Johnstone R, Simpson T H, Youngson A F. Sex reversal in salmonid culture[J]. Aquaculture, 1978, 13(2): 115-134..》Google Scholar
|
[18] |
Voorhees J M, Mamer E R J, Daniel J S, et al. 17β-estradiol can induce sex reversal in brown trout[J]. Fishes, 2023, 8(2): Article No.103..》Google Scholar
|
[19] |
Yamamoto T O. Artificial induction of functional sex-reversal in genotypic females of the medaka (Oryzias latipes)[J]. Journal of Experimental Zoology, 1958, 137(2): 227-263..》Google Scholar
|
[20] |
Chen C H, Li B J, Gu X H, et al. Marker-assisted selection of YY supermales from a genetically improved farmed tilapia-derived strain[J]. Zoological Research, 2019, 40(2): 108-112..》Google Scholar
|
[21] |
Ruksana S, Alam M A, Kobayashi Y, et al. Differentiation of steroid-producing cells and folliculogenesis in the developing ovary of the Nile tilapia Oreochromis niloticus[J]. Zoological Science, 2011, 28(11): 845-852..》Google Scholar
|
[22] |
Sun L W, Jin R, Peng Z H, et al. Effects of trilostane and fipronil on the reproductive axis in an early life stage of the Japanese medaka (Oryzias latipes)[J]. Ecotoxicology, 2014, 23(6): 1044-1054..》Google Scholar
|
[23] |
Sambroni E, Lareyre J J, Le Gac F. Fsh controls gene expression in fish both independently of and through steroid mediation[J]. PLoS One, 2013, 8(10): e76684..》Google Scholar
|
[24] |
Shi H J, Gao T, Liu Z L, et al. Blockage of androgen and administration of estrogen induce transdifferentiation of testis into ovary[J]. Journal of Endocrinology, 2017, 233(1): 65-80..》Google Scholar
|
[25] |
Du J X, Zhou J H, Li S J, et al. Timing of early gonadal differentiation and effects of estradiol-17β treatments on the sex differentiation in Largemouth bass (Micropterus salmoides) [J]. Fish Physiology and Biochemistry, 2022, 48(3): 805-815..》Google Scholar
|
[26] |
El-Greisy Z A, El-Gamal A E. Monosex production of Tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment[J]. The Egyptian Journal of Aquatic Research, 2012, 38(1): 59-66..》Google Scholar
|
[27] |
Zhou J H, Du J X, Jiang P, et al. Effects of 17α-methyltestosterone on growth and sex differentiation in largemouth bass (Micropterus salmoides)[J]. Journal of Fishery Sciences of China, 2021, 28(9): 1109-1117. [周家辉,杜金星,姜鹏,等. 17α-甲基睾酮对大口黑鲈生长及性腺发育的影响[J]. 中国水产科学,2021, 28(9): 1109-1117.].》Google Scholar
|
[28] |
Li M H, Sun L N, Wang D S. Roles of estrogens in fish sexual plasticity and sex differentiation[J]. General and Comparative Endocrinology, 2019, 277(11): 9-16..》Google Scholar
|
[29] |
Filby A L, Thorpe K L, Maack G, et al. Gene expression profiles revealing the mechanisms of anti-androgen-and estrogen-induced feminization in fish[J]. Aquatic Toxicology, 2007, 81(2): 219-231..》Google Scholar
|
[30] |
Kaliannan K, Robertson R C, Murphy K, et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice[J]. Microbiome, 2018, 6(1): Article No.205..》Google Scholar
|
[31] |
Mandiki S N M, Babiak I, Bopopi J M, et al. Effects of sex steroids and their inhibitors on endocrine parameters and gender growth differences in Eurasian perch (Perca fluviatilis) juveniles[J]. Steroids, 2005, 70(2): 85-94..》Google Scholar
|
[32] |
Flynn S R, Benfey T J. Effects of dietary estradiol-17β in juvenile shortnose sturgeon, Acipenser brevirostrum, Lesueur [J]. Aquaculture, 2007, 270(1-4): 405-412..》Google Scholar
|
[33] |
Teal C N, Schill D J, Fogelson S B, et al. The effects of estradiol-17β on the sex reversal, survival, and growth of green sunfish Lepomis cyanellus[J]. Aquaculture, 2023, 562(1): 738853..》Google Scholar
|
[34] |
Yue M M, Zhao J L. Effects of estradiol and testosterone on digestive enzyme activity and expression of food intake genes between female and male Nile tilapia Oreochromis niloticus[J]. Fisheries Science, 2018, 37(1): 85-92. [岳蒙蒙,赵金良. 性激素对雌、雄尼罗罗非鱼消化酶活性和摄食基因表达的影响[J]. 水产科学,2018, 37(1): 85-92.].》Google Scholar
|
[35] |
Villeneuve D L, Blake L S, Brodin J D, et al. Effects of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, on the fathead minnow reproductive axis[J]. Toxicological Sciences, 2008, 104(1): 113-123..》Google Scholar
|
[36] |
Zhou L B, Liu X C, Ye W, et al. In vitro studies of effects of 17β-estratiol and methyl-testosterone on gonadotropin secretion by pituitary of helmet catfish (Cranoglanis bouderius) [J]. Journal of Fishery Sciences of China, 2005, 12(2): 113-118. [周立斌,刘晓春,叶卫,等. 17β-雌二醇和甲基睾酮对离体长臀鮠脑垂体促性腺激素分泌的影响[J]. 中国水产科学,2005, 12(2): 113-118.].》Google Scholar
|
[37] |
Gennotte V, Mélard C, D'Cotta H, et al. The sensitive period for male-to-female sex reversal begins at the embryonic stage in the Nile tilapia and is associated with the sexual genotype[J]. Molecular Reproduction and Development, 2014, 81(12): 1146-1158..》Google Scholar
|
[38] |
Al-Ablani S A, Phelps R P. Induction of feminization in largemouth bass (Micropterus salmoides) by oral administration of estradiol-17beta or diethylstilbestrol and associated pathological effects[J]. Journal of Aquaculture in the Tropics, 2001, 2(16): 185-195..》Google Scholar
|
[39] |
Garrett G P. Hormonal sex control of largemouth bass[J]. The Progressive Fish-Culturist, 1989, 51(3): 146-148..》Google Scholar
|
[40] |
Bhandari R K, Nakamura M, Kobayashi T, et al. Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus)[J]. General and Comparative Endocrinology, 2006, 145(1): 20-24..》Google Scholar
|
[41] |
Golan M, Levavi-Sivan B. Artificial masculinization in tilapia involves androgen receptor activation[J]. General and Comparative Endocrinology, 2014, 207: 50-55..》Google Scholar
|
[42] |
Fan Z F, Zou Y X, Liang D D, et al. Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus)[J]. Reproduction, Fertility and Development, 2019, 31(11): 1742-1752..》Google Scholar
|
[43] |
Yuan H W. Effects of different exogenous factors on sex reversal of Monopterus albus[D]. Wuhan: Huazhong Agricultural University, 2011. [袁汉文. 不同外源因子对黄鳝性逆转的影响研究[D]. 武汉:华中农业大学,2011.].》Google Scholar
|
[44] |
Hu P, Liu B, Meng Z, et al. Recovery of gonadal development in tiger puffer Takifugu rubripes after exposure to 17β-estradiol during early life stages[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(3): 613-623..》Google Scholar
|
[45] |
Yao D X. Sex differentiation and hormonal sex reversal of Pelteobagrus fulvidraco[D]. Harbin: Northeast Forestry University, 2007. [姚道霞. 黄颡鱼性分化及激素诱导性转化研究[D]. 哈尔滨:东北林业大学,2007.].》Google Scholar
|
[46] |
Zhang X Y, Liu H J. Effects of 17β-estradiol on sex differentiation and growth in half-smooth tongue-sole (Cynoglossus semilaevis)[J]. Journal of Northeast Agricultural University, 2009, 40(6): 67-71. [张晓彦,刘海金. 17β-雌二醇对半滑舌鳎性分化和生长的影响[J]. 东北农业大学学报,2009, 40(6): 67-71.].》Google Scholar
|
[47] |
Li G L, Deng S P, Wang W D, et al. Effects of sex steroid hormones on sex differentiation of Clarias fuscus[J]. Acta Hydrobiologica Sinica, 2013, 37(6): 1020-1027. [李广丽,邓思平,王文达,等. 性类固醇激素对胡子鲇性分化的影响[J]. 水生生物学报,2013, 37(6): 1020-1027.].》Google Scholar
|
[48] |
Hu P, Liu S F, Liu X F, et al. Mechanisms of delayed ovarian development in pseudo-female Takifugu rubripes[J]. Journal of Fishery Sciences of China, 2019, 26(6): 1105-1115. [胡鹏,柳淑芳,刘新富,等. 红鳍东方鲀伪雌鱼卵巢发育迟滞的调控机制[J]. 中国水产科学,2019, 26(6): 1105-1115.].》Google Scholar
|
[49] |
Chauvin S, Cohen-Tannoudji J, Guigon C J. Estradiol signaling at the heart of folliculogenesis: Its potential deregulation in human ovarian pathologies[J]. International Journal of Molecular Sciences, 2022, 23(1): 512..》Google Scholar
|
[50] |
Aardema H, Roelen B A J, van Tol H T A, et al. Follicular 17β-estradiol and progesterone concentrations and degree of cumulus cell expansion as predictors of in vivo-matured oocyte developmental competence in superstimulated heifers[J]. Theriogenology, 2013, 80(6): 576-583..》Google Scholar
|
[51] |
Simpson E R, Mahendroo M S, Means G D, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis[J]. Endocrine Reviews, 1994, 15(3): 342-355..》Google Scholar
|
[52] |
Ma X, Liu Q, Wang L M. A review on Cyp19a1 function in sex differentiation and development of fish[J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(5): 96-101, 111. [马晓,刘倩,王璐明. Cyp19a1基因在鱼类性别分化和发育中的研究进展[J]. 河南师范大学学报(自然科学版), 2019, 47(5): 96-101, 111.].》Google Scholar
|
[53] |
Bayne S, Jones M E, Li H, et al. Estrogen deficiency leads to telomerase inhibition, telomere shortening and reduced cell proliferation in the adrenal gland of mice[J]. Cell Research, 2008, 18(11): 1141-1150..》Google Scholar
|
[54] |
Wen A Y, You F, Sun P, et al. Sexually dimorphic gene expression patterns during gonadal differentiation in olive flounder, Paralichthys olivaceus[J]. Animal Biology, 2015, 65(3-4): 193-207..》Google Scholar
|