中国水产科学  2024, Vol. 31 Issue (03): 278-285  DOI: 10.12264/JFSC2023-0319
0

引用本文 

何凡, 陈融斌, 缪雄平, 阙华勇. 急性低氧胁迫对福建牡蛎鳃组织氧化应激和闭壳肌能量代谢的影响[J]. 中国水产科学, 2024, 31(3): 278-285. DOI: 10.12264/JFSC2023-0319.
HE Fan, CHEN Rongbin, MIAO Xiongping, QUE Huayong. Effects of acute hypoxia on the oxidative response in gill tissue and energy metabolism in adductor muscle of Crassostrea angulata[J]. Journal of Fishery Sciences of China, 2024, 31(3): 278-285. DOI: 10.12264/JFSC2023-0319.

基金项目

国家自然科学基金项目(32172979);2023年度福建省促进海洋与渔业产业高质量发展专项(PJHYF-L-2023-2).

作者简介

何凡(2000‒),女,硕士研究生,研究方向为贝类经济性状遗传解析. E-mail:hhffsnd@163.com

通信作者

通信作者:阙华勇,教授,研究方向为贝类遗传育种. E-mail:hque@jmu.edu.cn

文章历史

收稿日期:2024-01-19
修改日期:2024-02-29
急性低氧胁迫对福建牡蛎鳃组织氧化应激和闭壳肌能量代谢的影响
何凡1,陈融斌3,缪雄平4,阙华勇1,2,     
1. 集美大学水产学院,农业农村部东海海水健康养殖重点实验室,福建省水产生物育种与健康养殖工程研究中心,福建 厦门 361021
2. 海水养殖生物育种全国重点实验室,福建 厦门 361021
3. 集美大学水产学院,福建省海洋渔业资源与生态环境重点实验室,福建 厦门 361021
4. 厦门海洋职业技术学院海洋生物学院,福建 厦门 361100
摘要:为探究福建牡蛎(Crassostrea angulata)在急性低氧胁迫下鳃组织的氧化应激反应和闭壳肌的能量代谢,本研究设置6个溶解氧浓度梯度(0.5 mg/L、1.0 mg/L、1.5 mg/L、2.0 mg/L、3.0 mg/L、4.0 mg/L),对福建牡蛎实施持续96 h低氧胁迫处理。采用酶联免疫分析技术分析低氧胁迫第6、12、24、48、72、96小时福建牡蛎鳃组织的总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性和丙二醛(MDA)含量以及闭壳肌组织的碱性磷酸酶(AKP)活性、乳酸脱氢酶(LDH)活性和糖原含量。结果显示:(1)6~24 h的低氧胁迫下,T-AOC、SOD活性和MDA含量呈现先升高后降低的现象,CAT活性则表现为先降低后升高。胁迫24 h时全部处理组的MDA含量和部分处理组的T-AOC和SOD活性恢复至对照组水平。24~96 h的低氧胁迫下,T-AOC、SOD活性和MDA含量呈现先升高后降低再升高,部分处理组CAT活性持续降低。低氧胁迫96 h,全部处理组的T-AOC活性和部分处理组的MDA含量及CAT活性恢复至对照组水平;除1.0 mg/L浓度组与对照组无显著差异(P>0.05),其余处理组SOD活性显著低于对照组(P<0.05)。(2)在96 h低氧胁迫过程中,部分处理组LDH活性在6~12 h和24~48 h期间显著升高(P<0.05);各低氧处理组的AKP活性随胁迫时间增加先降低后升高;糖原含量随低氧胁迫时间增加发生不同程度的下降,当胁迫至96 h时,除0.5 mg/L浓度组的糖原含量显著降低(P<0.05)之外,其他组糖原含量恢复到与对照组无显著差异(P>0.05)。上述结果表明,急性低氧胁迫下,福建牡蛎通过调整体内不同酶活性变化,改善机体氧化应激反应和能量代谢的收支平衡,但极端的低氧环境胁迫仍会对福建牡蛎造成不可修复的损伤。
关键词福建牡蛎    低氧胁迫        闭壳肌    抗氧化酶    代谢酶    
Effects of acute hypoxia on the oxidative response in gill tissue and energy metabolism in adductor muscle of Crassostrea angulata
HE Fan1,CHEN Rongbin3,MIAO Xiongping4,QUE Huayong,1,2    
1. Fisheries College, Jimei University, Key Laboratory of Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
2. State Key Laboratory of Mariculture Breeding, Xiamen 361021, China
3. Fisheries College, Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen 361021, China
4. College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China
Abstract:To investigate the oxidative stress response of gill tissues and the energy metabolism of the adductor muscle of Crassostrea angulata under hypoxic stress, six dissolved oxygen concentration gradients (0.5 mg/L, 1.0 mg/L, 1.5 mg/L, 2.0 mg/L, 3.0 mg/L, 4. 0 mg/L) were used to treat C. angulata under hypoxic stress for 96 h. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity, malondialdehyde (MDA) content of C. angulata gill tissues, alkaline phosphatase (AKP) activity, lactate dehydrogenase (LDH) activity, and glycogen content of the adductor muscle were determined using enzyme-linked immunosorbent technique at the 6th, 12th, 24th, 48th, 72nd, and 96th hour of hypoxic stress. The results showed that: (1) under low oxygen stress for 6–24 h, T-AOC, SOD activity, and MDA content showed the phenomenon of first increasing and then decreasing, while CAT activity showed the phenomenon of first decreasing and then increasing; at 24 h, the MDA content of the whole treatment group and the T-AOC activity and SOD activity of part of the treatment group were restored to the level of the control group; and under hypoxic stress for 24–96 h, T-AOC, SOD activity, and MDA content increased, then decreased, and then increased again, and CAT activity of some treatment groups continued to decrease. T-AOC activity of all treatment groups and MDA content and CAT activity of some treatment groups recovered to the level of the control group at 96 h, except for the 1.0 mg/L concentration group, which did not have any significant difference from the control group. The SOD activity of the rest of the treatment groups was significantly lower than that of the control group (P<0.05). (2) Over the 96 h of hypoxic stress, LDH activity significantly varied among different treatment groups, with a total of three peaks (P<0.05). AKP activity initially decreased and then increased with stress duration. Glycogen content decreased to varying degrees with prolonged hypoxic stress time, and after 96 h, the 0.5 mg/L concentration group, showed a significant decrease in glycogen content (P<0.05), while the other groups showed no significant differences from the control group. These results suggest that C. angulata exhibits strong hypoxia tolerance by modulating changes in various enzyme activities within the body to enhance the balance of body's oxidative stress response and energy metabolism. However, extreme hypoxic environmental stresses still affect the physiological state of C. angulate.
Key words Crassostrea angulata     hypoxic    gill    adductor    antioxidant enzyme    metabolic enzymes    

福建牡蛎(Crassostrea angulata)隶属于软体动物门(Mollusca),双壳纲(Lamellibranchia),珍珠贝目(Pterioida),牡蛎科(Ostreidae)[1]。2022年中国养殖牡蛎总产量619.54万t,其中福建省产量212.7281万t,占养殖牡蛎总产量的34.34%,是中国最大的牡蛎养殖区[2],其中福建牡蛎占福建省牡蛎养殖产量的90%以上,其生长速度快、养殖效益可观,是我国主养经济种类之一[3-4]

溶解氧(DO)是影响水生生物生长、繁殖、生存等的重要环境因子之一。20世纪中期至今,受全球气候变暖和近岸海水富营养化等影响,国内外近海海域季节性低氧现象日益增多,严重威胁着水生生物的生长和生存[5-7]。福建牡蛎作为栖息在河口和潮间带的固着生物,无法主动回避不利环境,容易受到低氧胁迫影响。低氧环境会导致细胞活性氧自由基(ROS)增加、脂质过氧化物大量生成、抗氧化酶活性变化等应激的连锁反应[8]。鳃作为牡蛎的呼吸器官,最先感知到水中溶解氧的变化,当牡蛎受到低氧刺激时,鳃氧化应激活力指标可用来表征低氧胁迫响应进而评估牡蛎健康状况和适应能力。总抗氧化能力(T-AOC)是表征生物机体抗氧化系统能力的重要参数,丙二醛(MDA)含量增加可作为生物体出现氧化损伤的重要指标[9-11]。在三角帆蚌(Hyriopsis cumingii)[12]和菲律宾蛤仔(Ruditapes philippinarum)[13]低氧胁迫的相关研究中发现,生物机体抗氧化酶活体系对低氧环境具有明显的响应,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)能在一定程度上缓解低氧环境对生物机体造成的损伤。另一方面,牡蛎等双壳类贝类的贝壳是应对低氧等逆境的重要屏障。在低氧胁迫前期,牡蛎通过闭壳肌的收缩和舒张控制贝壳开闭,减轻外界环境变化的影响,因此,闭壳肌碱性磷酸酶(AKP)活性变化能直观反映牡蛎机体对低氧的适应能力[14]。低氧胁迫后期,多数海洋动物通过开启无氧代谢以提高低氧耐受性。乳酸脱氢酶(LDH)和糖原分别是生物体内参加无氧代谢反应的关键酶和重要能量源,常被视为生物进行无氧代谢能力大小的指标[15]

目前关于低氧胁迫下福建牡蛎氧化应激和能量代谢的研究尚未见报道,本研究以福建牡蛎为研究对象,测定不同溶解氧浓度下鳃组织的总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、丙二醛(MDA)和闭壳肌中的乳酸脱氢酶(LDH)、碱性磷酸酶(AKP)、糖原含量的动态变化,从生理生化水平了解低氧暴露下福建牡蛎代谢系统的变化,为后续阐明福建牡蛎对低氧的适应机制,提高低氧环境的适应能力提供参考数据。

1 材料和方法 1.1 实验材料

用于实验的福建牡蛎采自福建省莆田海域同一养殖群体,均为1龄,壳长(48.79±2.72) mm,壳高(87.75±2.65) mm,壳宽(27.71±1.24) mm。实验开始前,将福建牡蛎放进200 L的养殖缸中进行室内暂养7 d。养殖水温(25±0.5) ℃,盐度30, pH 8.0±0.1,溶解氧浓度(8.2±0.1) mg/L,每日定时(9:00和18:00)投喂饵料微藻2次,换水1次。实验前24 h停止投喂。

1.2 低氧胁迫实验及样本采集

本研究设置1个对照组(control)和6个处理组,每组在60 L海水放入20个福建牡蛎。对照组水体溶解氧浓度为8.2 mg/L, 6个处理组水体溶解氧浓度分别为0.5 mg/L、1.0 mg/L、1.5 mg/L、2.0 mg/L、3.0 mg/L、4.0 mg/L,每组3个重复。将福建牡蛎从暂养条件中迅速转移至不同溶解氧浓度处理组实验中,进行96 h低氧胁迫实验。分别在低氧胁迫处理6、12、24、48、72、96 h随机取样,每组3个个体,分离出的鳃和闭壳肌放入冻存管,标号记录,迅速投入液氮中速冻,而后置于−80 ℃冰箱保存备用。整个实验过程中使用溶解氧在线监测控制系统使对照组和6个处理组水体溶解氧维持在设定浓度水平(±0.1 mg/L)。

1.3 生化指标测定

将冷冻组织称重,按质量体积比1 : 9 (g/mL)加入匀浆介质(0.9%的生理盐水),在冰浴条件下配制成10%的组织匀浆,并在4 ℃下以2500 r/min离心10 min,取上清液备用。鳃组织中总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、丙二醛(MDA)、蛋白含量和闭壳肌中的乳酸脱氢酶(LDH)、碱性磷酸酶(AKP)、糖原及蛋白含量的检测试剂盒购自南京建成生物工程研究所。具体操作步骤参照试剂盒说明书。

1.4 数据分析

实验结果以平均值±标准差($\bar x \pm {\rm{SD}}$)表示。使用统计分析软件SPSS 28.0对实验数据进行单因素方差分析(one-way ANOVA)和Duncan多重比较分析,对不同酶活指标之间的交互作用采用双因素方差分析(two-way ANOVA);利用GraphPad Prism 8进行图表绘制,P<0.05表示差异显著。

2 结果与分析 2.1 低氧胁迫对福建牡蛎鳃组织抗氧化酶活性的影响

经低氧胁迫处理后,全部处理组T-AOC活性在6 h时较对照组显著降低(P<0.05); 12 h时活力值急剧升高,其中2 mg/L浓度组达到最大值(3.87±0.48) U/mg prot; 12~24 h各处理组T-AOC活性再次出现下降,0.5 mg/L浓度组下降幅度最小;24~72 h除4.0 mg/L浓度组,其余处理组再次出现先升高后降低的现象;随胁迫时间增加至96 h,全部处理组T-AOC活性恢复至对照组水平(图1)。

图1  急性低氧胁迫下福建牡蛎鳃组织T-AOC活性变化 Fig. 1  Changes of T-AOC activity in gill of Crassostrea angulata exposed to acute hypoxia stress

SOD在正常溶氧条件下,维持稳定活性,无显著性差异(P<0.05)。低氧胁迫6~12 h时,0.5 mg/L、1.0 mg/L、1.5 mg/L和2.0 mg/L浓度组SOD酶活力值显著升高(P<0.05),其中1.5 mg/L浓度组达到最高值(108.20±14.07) U/mg prot; 12~24 h各处理组SOD酶活力值降低;24~72 h各处理组SOD酶活力值再度出现先升高后降低的现象;低氧胁迫96 h时除1.0 mg/L浓度组与对照组SOD酶活力值无显著差异,其余处理组较对照组显著降低(P<0.05)(图2)。

图2  急性低氧胁迫下福建牡蛎鳃组织SOD活性变化 Fig. 2  Changes of SOD activity in gill of Crassostrea angulata exposed to acute hypoxia stress

在96 h低氧胁迫过程中,0.5 mg/L、1.0 mg/L、1.5 mg/L和2.0 mg/L浓度组CAT活力值在24 h达到最大值(图3); 3.0 mg/L浓度组则在24 h达到最小值(0.55±0.09) U/mg prot;随着低氧时间增加至96 h, 1.5 mg/L浓度组CAT活力值与对照组相比显著降低,其余处理组CAT活力值与对照组无显著差异(P<0.05)。

图3  急性低氧胁迫下福建牡蛎鳃组织CAT活性变化 Fig. 3  Changes of CAT activity in gill of Crassostrea angulata exposed to acute hypoxia stress

低氧胁迫6~12 h,各处理组MDA含量显著增加(P<0.05), 2.0 mg/L浓度组MDA含量在12 h时达到最大值(9.55±1.30) nmol/mg prot (图4); 24 h时各处理组恢复至对照组水平;24~72 h时,除4.0 mg/L浓度组,其余处理组MDA含量再次出现先升高后降低的现象;低氧处理持续至96 h时,除1.0 mg/L浓度组MDA含量显著升高(P<0.05),其他处理组MDA含量稳定在对照组水平。

图4  急性低氧胁迫下福建牡蛎鳃组织MDA含量变化 Fig. 4  Changes of MDA content in gill of Crassostrea angulata exposed to acute hypoxia stress

96 h低氧胁迫过程中,福建牡蛎在鳃组织中的T-AOC、SOD活性和MDA含量变化趋势基本一致。6~12 h,机体低氧应激反应迅速,T-AOC、SOD、MDA活力值显著升高(P<0.05); 12~24 h, T-AOC、SOD、MDA活性降低;24~72 h氧化应激酶活性再次出现相同的下降上升趋势,但变化幅度小于前24 h;持续低氧胁迫至96 h时,全部处理组T-AOC活性、部分处理组的CAT活性和MDA含量恢复至对照组水平,但除1.0 mg/L浓度组,其余处理组SOD活性显著低于对照组(P<0.05)。同时Pearson相关系数显示,T-AOC活性与SOD活性呈高度正相关(r=0.881, P<0.01),与MDA活性呈正相关(r=0.728, P<0.01); SOD活性与MDA活性呈正相关(r=0.744, P<0.01),三者活性变化规律呈显著交互作用(P<0.01)。

2.2 低氧胁迫对福建牡蛎闭壳肌组织能量代谢的影响

图5可以看出,低氧胁迫6 h时,除1.0 mg/L浓度组外,其他处理组AKP活性显著低于对照组(P<0.05);随实验时间延长,0.5 mg/L和4.0 mg/L浓度组AKP活性于72 h达到最大值,96 h降低至对照组水平;其余处理组AKP活性则在96 h达到最大值,显著高于对照组(P<0.05)。

图5  急性低氧胁迫下福建牡蛎闭壳肌AKP活性变化 Fig. 5  Changes of AKP activity in adductor muscle of Crassostrea angulata exposed to acute hypoxia stress

在96 h低氧胁迫过程中,不同处理组LDH活性变化趋势明显(图6)。2.0 mg/L和3.0 mg/L浓度组LDH活性在12 h较其他处理组极显著升高(P<0.05),出现96 h胁迫过程中的第1次高峰;48 h时,0.5 mg/L和2.0 mg/L浓度组LDH活性显著升高(P<0.05),出现低氧胁迫过程中第2次高峰;72 h时,0.5 mg/L浓度组LDH活性显著升高(P<0.05),出现低氧胁迫过程中第3次高峰。随低氧胁迫时间增加至96 h时,0.5 mg/L浓度组显著高于对照组(P<0.05), 1.0 mg/L和1.5 mg/L浓度组显著低于对照组(P<0.05)。

图6  急性低氧胁迫下福建牡蛎闭壳肌LDH活性变化 Fig. 6  Changes of LDH activity in adductor muscle of Crassostrea angulata exposed to acute hypoxia stress

不同处理组糖原含量在96 h低氧胁迫过程中随实验时间延长,出现不同程度的降低(图7)。低氧胁迫12 h,除1.0 mg/L浓度组,其他处理组糖原含量显著降低(P<0.05); 24~48 h时,各处理组糖原含量开始增加,趋近对照组糖原水平;48~72 h时,除3.0 mg/L浓度组糖原含量与对照组无显著性差异,其余处理组再次出现下降趋势;低氧胁迫72~96 h时,除0.5 mg/L浓度组的糖原含量显著低于对照组(P<0.05),其余处理组糖原含量回升趋近对照组水平。

图7  急性低氧胁迫下福建牡蛎闭壳肌糖原含量变化 Fig. 7  Changes of glycogen content in adductor muscle of Crassostrea angulata exposed to acute hypoxia stress
3 讨论 3.1 低氧胁迫对福建牡蛎鳃组织抗氧化酶活性的影响

溶解氧是水生生物生长发育的必要条件之一,低氧干扰鲤鱼体内ROS的动态平衡,过量生成的ROS导致机体出现氧化损伤和脂质过氧化[16]。在此过程中,机体内的T-AOC、SOD、CAT和MDA等抗氧化酶参与消除这些不利因素引起的机体损伤。本研究中,低氧胁迫12 h时,福建牡蛎体内MDA含量增加,T-AOC活力值升高,表明体内抗氧化系统被激活,SOD通过歧化作用将过氧化物自由基转化为过氧化氢(H2O2)和氧气(O2),在一定程度上缓解水中溶解氧降低对机体的损害。12~24 h时,CAT活力升高,将过氧化氢(H2O2)分解为水(H2O)和氧气(O2),伴随T-AOC、SOD和MDA含量下降,表明福建牡蛎通过调节抗氧化系统有效应对低氧胁迫。24~48 h时,T-AOC、SOD活力值再次升高,MDA增加,机体脂质过氧化程度加深,较6~12 h应激时酶活力值上升幅度变小,表明随低氧时间增加,福建牡蛎体内抗氧化防御系统应对能力不断加强。48~72 h时,随着SOD歧化产生的过氧化氢(H2O2)超出福建牡蛎可分解的范围,机体抗氧化系统受到破坏,T-AOC活性下降,SOD活力也随之下降。72~96 h时,T-AOC、MDA含量升高,生物体通过调节酶活减少应激带来的氧化压力;但SOD活力持续下降,表明福建牡蛎经96 h持续低氧已无法有效应对低氧胁迫。

本研究发现福建牡蛎在低氧胁迫下,鳃组织中T-AOC, SOD和MDA活性变化趋势基本一致。急性缺氧会诱导生物体内粒细胞ROS的积累[17],机体受到氧化损伤,促使MDA含量增多,SOD为清除ROS代偿性上升,抵御机体所受的氧化损伤,T-AOC活性也随之升高表明机体抗氧化系统高效运行。相似的现象在香港牡蛎(Crassostrea hongkongensi)和虾夷扇贝(Patinopecten yessoensis)的相关研究中已有报道[18-19]。但随低氧胁迫时间延长,不同溶氧处理组鳃组织SOD活性显著降低(P<0.05),无法恢复至正常水平,李磊等[20]认为ROS超出SOD抗氧化能力范围,就会对机体造成损伤。本研究中,12~96 h中,不同溶氧处理组CAT酶活力先升高后下降,这与大黄鱼(Larimichthys crocea)[21]进行低氧胁迫时,其体内H2O2大量累积,超出机体承受范围,酶活力受到抑制的研究结果类似。当机体抗氧化防御系统无法清除ROS时,MDA含量可以反映机体细胞氧化损伤的严重程度[22-23],本研究中低氧胁迫至96 h时1.0 mg/L浓度组MDA含量与对照组相比显著升高(P< 0.05),表明经过96 h极端低氧处理后,氧化应激产物不断累积,已超出机体抗氧化防御系统的清除能力,福建牡蛎抗氧化系统损伤严重。

3.2 低氧胁迫对福建牡蛎闭壳肌组织能量代谢的影响

AKP在水生生物抵御外界环境压力的代谢过程中发挥重要作用,反映机体对外界环境的防御能力[24]。低氧环境下,LDH能催化丙酮酸和乳酸转化,有助于维持缺氧早期生物的代谢活动,其活性通常能反映生物机体无氧代谢的水平[14]。此外,有研究表明,在低氧胁迫条件下,贝类可主动调节糖原含量,从有氧代谢转为无氧代谢,提供能量以维持存活需求[25-26]

在低氧环境下,秘鲁紫扇贝(Argopecten purpuratus)会调节代谢率以减少能量需求[27],鲍在低氧胁迫下的能量代谢由以糖类为底物的代谢向以蛋白质或氨基酸为底物的代谢转化[28]。夏玉莹等[29]的研究提出虾夷扇贝(Patinopecten yessoensis)降低有氧呼吸强度,改变呼吸途径以应对低氧环境。以上研究皆表明低氧环境下的海洋生物生理代谢会在一定范围内做出适应性调整。海洋无脊椎动物无氧代谢主要存在4种途径[30-31],其中之一的葡萄糖-乳酸代谢途径会生成乳酸等酸性物质,不利于细胞稳态的维持[32]。本研究发现福建牡蛎在低氧胁迫6~12 h期间2.0 mg/L和3.0 mg/L浓度组LDH活力值显著升高,24~48 h期间0.5 mg/L和2.0 mg/L浓度组LDH活力值显著升高,暗示牡蛎通过提高LDH活力催化丙酮酸转化为乳酸,以供机体提高厌氧代谢比率,推动福建牡蛎开启无氧代谢。96 h的低氧胁迫过程中,不同溶氧浓度处理组闭壳肌的AKP活性先降低后升高,表明牡蛎通过生成无机磷酸,促进体内ATP的合成,提高机体防御环境低氧的能力。本研究中,福建牡蛎闭壳肌中的糖原含量随胁迫时间的延长,出现不同程度的下降,这可能说明福建牡蛎在短时间内启动厌氧糖酵解,闭壳肌储存的糖原分解为葡萄糖等机体可直接利用的能量物质,为机体提供能量以应对低氧刺激带来的压力。这与军曹鱼((Rachycentron canadum)进行低氧胁迫时,肌糖原和肝糖原含量显著降低的研究结果相似[33]。当胁迫时间延长到72 h时,1.0 mg/L、1.5 mg/L、2.0 mg/L和3.0 mg/L浓度组的糖原含量趋近对照组水平,表明随胁迫时间的增加,福建牡蛎闭壳肌能量代谢发生适应性调整,逐渐恢复正常水平,有氧呼吸加强。低氧胁迫下香港牡蛎(Crassostrea hongkongensi)的糖原含量在0~48 h显著降低,48~72 h显著升高[18],表明同属于巨蛎属的福建牡蛎和香港牡蛎具有类似的利用糖原应对低氧胁迫的机制。值得注意的是,低氧胁迫96 h时,0.5 mg/L浓度组福建牡蛎糖原含量无法恢复至正常水平,表明长时极端低氧胁迫会对福建牡蛎机体造成不可逆的损伤。

综上所述,本研究发现福建牡蛎可通过调整鳃组织中T-AOC活性、SOD活性、CAT活性、MDA含量以增强对低氧环境的适应性,同时通过调整闭壳肌组织中AKP活性和糖原含量以满足机体在低氧胁迫下的能量代谢需求,以上相关酶均可作为监测福建牡蛎响应低氧环境变化的有效指标。此外,长时间极端的低氧胁迫会对牡蛎造成了不可逆的氧化损伤。

参考文献
[1]
Wu Q S, Ning Y, Zeng Z N, et al. Analysis of cultivated oyster populations along the coastline of Fujian by multiplex species-specific PCR and morphological parameters[J]. Journal of Fujian Fisheries, 2014, 36(1): 7-13. [巫旗生,宁岳,曾志南,等. 福建沿海牡蛎养殖群体的多重种类特异性PCR分析和形态参数比较[J]. 福建水产,2014, 36(1): 7-13.].》Google Scholar
[2]
Administrative Department for Fisheries the Ministry for Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook[M]. Beijing: China Agricultural Press, 2021: 43-47. [农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会. 中国渔业统计年鉴[M]. 北京:中国农业出版社,2021: 43-47.].》Google Scholar
[3]
Du X, Guo X M, Qian L M. Distribution of Crassostrea oysters in coastal sea of Fujian[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(3): 399-404. [杜玄,郭希明,钱鲁闽. 福建沿海巨蛎属牡蛎的主要种类及其分布[J]. 台湾海峡,2009, 28(3): 399-404.].》Google Scholar
[4]
Zeng Z N, Ning Y. History, status and future of oyster culture in Fujian China[J]. Marine Sciences, 2011, 35(9): 112-118. [曾志南,宁岳. 福建牡蛎养殖业的现状、问题与对策[J]. 海洋科学,2011, 35(9): 112-118.].》Google Scholar
[5]
Allen S M, Burnett L E. The effects of intertidal air exposure on the respiratory physiology and the killing activity of hemocytes in the Pacific oyster, Crassostrea gigas (Thunberg) [J]. Journal of Experimental Marine Biology and Ecology, 2008, 357(2): 165-171..》Google Scholar
[6]
Shen Y W, You W W, Luo X, et al. An overview of the mechanisms underlying hypoxia tolerance differences in aquatic animals and their inspirations for aquaculture[J]. Reviews in Fish Biology and Fisheries, 2023, 33(4): 1223- 1236..》Google Scholar
[7]
Stevens P W, Blewett D A, Casey J P. Short-term effects of a low dissolved oxygen event on estuarine fish assemblages following the passage of hurricane Charley[J]. Estuaries & Coasts, 2006, 29(6): 997-1003..》Google Scholar
[8]
Sena L A, Chandel N S. Physiological roles of mitochondrial reactive oxygen species[J]. Molecular Cell, 2012, 48(2): 158- 167..》Google Scholar
[9]
Zhou C P, Ge X P, Lin H Z, et al. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus)[J]. Fish and Shellfish Immunology, 2014, 41(2): 183-190..》Google Scholar
[10]
Wang X Y, Yang H S, Liu G B, et al. Enzyme responses and lipid peroxidation in gills and hepatopancreas of clam Mactra vereformis, following cadmium exposure[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5): 981-989..》Google Scholar
[11]
Le Moullac G, Bacca H, Huvet A, et al. Transcriptional regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in the adductor muscle of the oyster Crassostrea gigas during prolonged hypoxia[J]. Journal of Experimental Zoology, Part A, Ecological Genetics and Physiology, 2007, 307(7): 371-382..》Google Scholar
[12]
Guo S P. Annual changes of outer gill morphology and effects of hypoxia stress on gill morphology and enzyme activities of female Hyriopsis cumingii[D]. Shanghai: Shanghai Ocean University, 2021. [郭思鹏. 雌性三角帆蚌外鳃组织形态周年变化及低氧胁迫对外鳃组织形态和酶活性影响[D]. 上海:上海海洋大学,2021.].》Google Scholar
[13]
Zhou L Q, Jing H, Ge G Y, et al. Effects of three dissolved oxygen modes on oxidative stress and physiological metabolism in Ruditapes philippinarum gill tissue and hemolymph[J]. Journal of Fishery Sciences of China, 2023, 30(3): 361-370. [周丽青,井浩,葛广玉,等. 溶氧变化模式对菲律宾蛤仔鳃组织和血淋巴液氧化应激及生理代谢的影响[J]. 中国水产科学,2023, 30(3): 361-370.].》Google Scholar
[14]
Yang C Y, Du X D, Hao R J, et al. Effect of vitamin D3 on immunity and antioxidant capacity of pearl oyster Pinctada fucata martensii after transplantation: Insights from LC-MS-based metabolomics analysis[J]. Fish and Shellfish Immunology, 2019, 94: 271-279..》Google Scholar
[15]
Mahfouz M E, Hegazi M M, El-Magd M A, et al. Metabolic and molecular responses in Nile tilapia, Oreochromis niloticus during short and prolonged hypoxia[J]. Marine and Freshwater Behaviour and Physiology, 2015, 48(5-6): 319-340..》Google Scholar
[16]
Mustafa S A, Al-Subiai S N, Davies S J, et al. Hypoxia-induced oxidative DNA damage links with higher level biological effects including specific growth rate in common carp, Cyprinus carpio L.[J]. Ecotoxicology, 2011, 20(6): 1455-1466..》Google Scholar
[17]
Andreyeva A Y, Gostyukhina O L, Kladchenko E S, et al. Acute hypoxic exposure: Effect on hemocyte functional parameters and antioxidant potential in gills of the Pacific oyster, Crassostrea gigas[J]. Marine Environmental Research, 2021, 169: 105389..》Google Scholar
[18]
Ma Y. Physiological response and transcriptome analysis to hypoxia stress in Crassostrea hongkongensis[D]. Qinzhou: Beibu Gulf University, 2022. [马元. 香港牡蛎对低氧胁迫的生理响应及转录组分析[D]. 钦州:北部湾大学,2022.].》Google Scholar
[19]
Jiang W W, Li J Q, Gao Y P, et al. Effects of temperature change on physiological and biochemical responses of Yesso scallop, Patinopecten yessoensis[J]. Aquaculture, 2016, 451: 463-472..》Google Scholar
[20]
Li L, Ping X Y, Song W, et al. Toxic effects of copper ion in Mytilus coruscus: An integrated biomarker approach[J]. Progress in Fishery Sciences, 2020, 41(3): 32-39. [李磊,平仙隐,宋炜,等. 基于IBR模型的Cu2+对厚壳贻贝的毒性效应研究[J]. 渔业科学进展,2020, 41(3): 32-39.].》Google Scholar
[21]
Wang Q F, Shen W L, Hou C C, et al. Physiological responses and changes in gene expression in the large yellow croaker Larimichthys crocea following exposure to hypoxia[J]. Chemosphere, 2017, 169: 418-427..》Google Scholar
[22]
Thomas J P, Maiorino M, Ursini F, et al. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides[J]. Journal of Biological Chemistry, 1990, 265(1): 454-461..》Google Scholar
[23]
Holowiecki A, O'Shields B, Jenny M J. Spatiotemporal expression and transcriptional regulation of heme oxygenase and biliverdin reductase genes in zebrafish (Danio rerio) suggest novel roles during early developmental periods of heightened oxidative stress[J]. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 2017, 191: 138-151..》Google Scholar
[24]
Liang S, Luo X, You W W, et al. The role of hybridization in improving the immune response and thermal tolerance of abalone[J]. Fish and Shellfish Immunology, 2014, 39(1): 69-77..》Google Scholar
[25]
Jiang W W. Effects of temperature variation on physiological activities of scallops and abalone[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2017. [姜娓娓. 扇贝和皱纹盘鲍对温度变化的生理响应研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2017.].》Google Scholar
[26]
Samain J F. Review and perspectives of physiological mechanisms underlying genetically-based resistance of the Pacific oyster Crassostrea gigas to summer mortality[J]. Aquatic Living Resources, 2011, 24(3): 227-236..》Google Scholar
[27]
Aguirre-Velarde A, Jean F, Thouzeau G, et al. Feeding behaviour and growth of the Peruvian scallop (Argopecten purpuratus) under daily cyclic hypoxia conditions[J]. Journal of Sea Research, 2018, 131: 85-94..》Google Scholar
[28]
Shen Y W, Zhang Y, Xiao Q Z, et al. Distinct metabolic shifts occur during the transition between normoxia and hypoxia in the hybrid and its maternal abalone[J]. The Science of the Total Environment, 2021, 794: 148698..》Google Scholar
[29]
Xia Y Y, Zhang J H, Liu Y. Behavioral characteristics and physiological responses to hypoxic stress in Patinopecten yessoensis[J]. Journal of Fishery Sciences of China, 2021, 28(10): 1319-1328. [夏玉莹,张继红,刘毅. 低氧胁迫下虾夷扇贝的行为特征及生理生化响应[J]. 中国水产科学,2021, 28(10): 1319-1328.].》Google Scholar
[30]
Livingstone D R, de Zwaan A, Leopold M, et al. Studies on the phylogenetic distribution of pyruvate oxidoreductases[J]. Biochemical Systematics & Ecology, 1983, 11(4): 415-425..》Google Scholar
[31]
Harcet M, Perina D, Pleše B. Opine dehydrogenases in marine invertebrates[J]. Biochemical Genetics, 2013, 51(9-10): 666-676..》Google Scholar
[32]
Larade K, Storey K B. Chapter 3-A profile of the metabolic responses to Anoxia in marine invertebrates[M]//Cell and Molecular Response to Stress. Amsterdam: Elsevier, 2002: 27-46..》Google Scholar
[33]
Li H J, Chen G, Guo Z X, et al. Oxidative stress and energy utilization responses of juvenile cobia (Rachycentron canadum) to environmental hypoxia stress[J]. Haiyang Xuebao, 2020, 42(4): 12-19. [李洪娟,陈刚,郭志雄,等. 军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J]. 海洋学报,2020, 42(4): 12-19.].》Google Scholar